Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, China.
Sci Rep. 2016 Sep 6;6:32811. doi: 10.1038/srep32811.
Xanthomonas campestris pv. campestris (Xcc), a Gram-negative phytopathogenic bacterium, causes black rot disease of cruciferous vegetables. Although Xcc has a complex fatty acid profile comprised of straight-chain fatty acids and branched-chain fatty acids (BCFAs), and encodes a complete set of genes required for fatty acid synthesis, there is still little known about the mechanism of BCFA synthesis. We reported that expression of Xcc fabH restores the growth of Ralstonia solanacearum fabH mutant, and this allows the R. solanacearum fabH mutant to produce BCFAs. Using in vitro assays, we demonstrated that Xcc FabH is able to condense branched-chain acyl-CoAs with malonyl-ACP to initiate BCFA synthesis. Moreover, although the fabH gene is essential for growth of Xcc, it can be replaced with Escherichia coli fabH, and Xcc mutants failed to produce BCFAs. These results suggest that Xcc does not have an obligatory requirement for BCFAs. Furthermore, Xcc mutants lost the ability to produce cis-11-methyl-2-dodecenoic acid, a diffusible signal factor (DSF) required for quorum sensing of Xcc, which confirms that the fatty acid synthetic pathway supplies the intermediates for DSF signal biosynthesis. Our study also showed that replacing Xcc fabH with E. coli fabH affected Xcc pathogenesis in host plants.
野油菜黄单胞菌野油菜致病变种(Xcc)是一种革兰氏阴性植物病原细菌,可引起十字花科蔬菜的黑腐病。尽管 Xcc 的脂肪酸图谱复杂,由直链脂肪酸和支链脂肪酸(BCFA)组成,并编码了脂肪酸合成所需的完整基因集,但人们对 BCFA 合成的机制仍知之甚少。我们曾报道过,Xcc fabH 的表达可恢复茄属青枯菌 fabH 突变体的生长,从而使茄属青枯菌 fabH 突变体能够产生 BCFA。通过体外实验,我们证明了 Xcc FabH 能够使支链酰基辅酶 A 与丙二酰-ACP 缩合,从而启动 BCFA 合成。此外,尽管 fabH 基因对 Xcc 的生长是必需的,但它可以被大肠杆菌 fabH 取代,而 Xcc 突变体无法产生 BCFA。这些结果表明,Xcc 并不一定需要 BCFA。此外,Xcc 突变体丧失了产生顺-11-甲基-2-十二碳烯酸的能力,而顺-11-甲基-2-十二碳烯酸是 Xcc 群体感应所必需的扩散信号因子(DSF),这证实了脂肪酸合成途径为 DSF 信号生物合成提供了中间产物。我们的研究还表明,用大肠杆菌 fabH 取代 Xcc fabH 会影响 Xcc 在宿主植物中的致病性。