Suppr超能文献

高蛋白的灵活性和减少水合动力学是原核生物适应压力的关键策略。

High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes.

机构信息

Institut Laue Langevin, F-38042 Grenoble Cedex 9, France.

Univ. Grenoble Alpes, IBS, F-38041 Grenoble Cedex 9, France.

出版信息

Sci Rep. 2016 Sep 6;6:32816. doi: 10.1038/srep32816.

Abstract

Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

摘要

通过在高压(0.1 和 40 MPa)下对嗜压古菌Thermococcus barophilus 和与其密切相关的压力敏感型Thermococcus kodakarensis 进行准弹性中子散射,测量了纳米尺度上水和蛋白质的动态变化。我们发现,压力敏感型生物的细胞表现出更高的内在稳定性。在压力下,水合动力学以及快速蛋白质和脂质动力学都受到抑制。相比之下,Thermococcus barophilus 的蛋白质组比 Thermococcus kodakarensis 的蛋白质组对压力更敏感。水合水的扩散系数降低,而快速蛋白质和脂质动力学随压力的增加而略有增强。这些发现表明,水合水与细胞成分之间的耦合可能不是简单的主从关系。我们提出,Thermococcus barophilus 蛋白质组的高灵活性与水合水的减少可能是细胞适应高压的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c09f/5011708/f61444936a4d/srep32816-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验