Université de Lyon, UCBL, INSA Lyon, CNRS, MAP UMR 5240, 69621 Villeurbanne, France.
CBS, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 34090 Montpellier, France.
Int J Mol Sci. 2022 Jul 30;23(15):8469. doi: 10.3390/ijms23158469.
Life is thought to have appeared in the depth of the sea under high hydrostatic pressure. Nowadays, it is known that the deep biosphere hosts a myriad of life forms thriving under high-pressure conditions. However, the evolutionary mechanisms leading to their adaptation are still not known. Here, we show the molecular bases of these mechanisms through a joint structural and dynamical study of two orthologous proteins. We observed that pressure adaptation involves the decoupling of protein-water dynamics and the elimination of cavities in the protein core. This is achieved by rearranging the charged residues on the protein surface and using bulkier hydrophobic residues in the core. These findings will be the starting point in the search for a complete genomic model explaining high-pressure adaptation.
生命被认为是在深海高压环境下出现的。如今,人们已经知道,深海生物圈中存在着无数种在高压环境下茁壮成长的生命形式。然而,导致它们适应这种环境的进化机制尚不清楚。在这里,我们通过对两种同源蛋白的结构和动力学联合研究,揭示了这些机制的分子基础。我们观察到,压力适应涉及到蛋白质-水动力学的解耦和蛋白质核心空腔的消除。这是通过在蛋白质表面重新排列带电残基并用更庞大的疏水残基取代核心空腔来实现的。这些发现将成为寻找完整基因组模型来解释高压适应的起点。