Lai Ching-Yao, Zheng Zhong, Dressaire Emilie, Stone Howard A
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
Philos Trans A Math Phys Eng Sci. 2016 Oct 13;374(2078). doi: 10.1098/rsta.2015.0425.
The dynamics of fluid-driven cracks in an elastic matrix is studied experimentally. We report the crack radius R(t) as a function of time, as well as the crack shapes w(r,t) as a function of space and time. A dimensionless parameter, the pressure ratio Δpf/Δpv, is identified to gauge the relative importance between the toughness (Δpf) and viscous (Δpv) effects. In our previous paper (Lai et al. 2015 Proc. R. Soc. A 471, 20150255. (doi:10.1098/rspa.2015.0255)), we investigated the viscous limit experimentally when the toughness-related stresses are negligible for the crack propagation. In this paper, the experimental parameters, i.e. Young's modulus E of the gelatin, viscosity μ of the fracturing liquid and the injection flow rate Q, were chosen so that the viscous effects in the flow are negligible compared with the toughness effects, i.e. Δpf/Δpv≫1. In this limit, the crack dynamics can be described by the toughness-dominated scaling laws, which give the crack radius R(t)∝t(2/5) and the half maximum crack thickness W(t)∝t(1/5) The experimental results are in good agreement with the predictions of the toughness scaling laws: the experimental data for crack radius R(t) for a wide range of parameters (E,μ,Q) collapse after being rescaled by the toughness scaling laws, and the rescaled crack shapes w(r,t) also collapse to a dimensionless shape, which demonstrates the self-similarity of the crack shape. The appropriate choice of the viscous or toughness scaling laws is important to accurately describe the crack dynamics.This article is part of the themed issue 'Energy and the subsurface'.
本文对弹性基体中流体驱动裂纹的动力学进行了实验研究。我们报告了裂纹半径R(t)随时间的变化函数,以及裂纹形状w(r,t)随空间和时间的变化函数。确定了一个无量纲参数——压力比Δpf/Δpv,以衡量韧性(Δpf)和粘性(Δpv)效应之间的相对重要性。在我们之前的论文中(Lai等人,《皇家学会学报A》,2015年,第471卷,20150255页。(doi:10.1098/rspa.2015.0255)),我们研究了粘性极限情况,即与裂纹扩展相关的韧性应力可忽略不计的情况。在本文中,我们选择了实验参数,即明胶的杨氏模量E、压裂液的粘度μ和注入流速Q,使得流动中的粘性效应与韧性效应相比可忽略不计,即Δpf/Δpv≫1。在此极限下,裂纹动力学可用韧性主导的标度律来描述,该标度律给出裂纹半径R(t)∝t(2/5)和半最大裂纹厚度W(t)∝t(1/5)。实验结果与韧性标度律的预测结果吻合良好:在通过韧性标度律重新标度后,一系列参数(E,μ,Q)下的裂纹半径R(t)的实验数据汇聚在一起,重新标度后的裂纹形状w(r,t)也汇聚成一个无量纲形状,这证明了裂纹形状的自相似性。正确选择粘性或韧性标度律对于准确描述裂纹动力学很重要。本文是主题为“能源与地下”的特刊的一部分。