Lucantonio Alessandro, Noselli Giovanni, Trepat Xavier, DeSimone Antonio, Arroyo Marino
SISSA-International School for Advanced Studies, via Bonomea 265, 34136 Trieste, Italy.
Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, 08028 Barcelona, Spain.
Phys Rev Lett. 2015 Oct 30;115(18):188105. doi: 10.1103/PhysRevLett.115.188105. Epub 2015 Oct 28.
Brittle materials propagate opening cracks under tension. When stress increases beyond a critical magnitude, then quasistatic crack propagation becomes unstable. In the presence of several precracks, a brittle material always propagates only the weakest crack, leading to catastrophic failure. Here, we show that all these features of brittle fracture are fundamentally modified when the material susceptible to cracking is bonded to a hydrogel, a common situation in biological tissues. In the presence of the hydrogel, the brittle material can fracture in compression and can hydraulically resist cracking in tension. Furthermore, the poroelastic coupling regularizes the crack dynamics and enhances material toughness by promoting multiple cracking.
脆性材料在拉伸时会扩展张开型裂纹。当应力增加超过临界值时,准静态裂纹扩展会变得不稳定。在存在多个预裂纹的情况下,脆性材料总是只扩展最薄弱的裂纹,从而导致灾难性失效。在此,我们表明,当易开裂材料与水凝胶结合时(这在生物组织中是常见情况),脆性断裂的所有这些特征都会从根本上得到改变。在有水凝胶存在的情况下,脆性材料在压缩时会断裂,在拉伸时能通过液压抵抗开裂。此外,孔隙弹性耦合使裂纹动力学规律化,并通过促进多重开裂提高材料韧性。