Cochard T, Svetlizky I, Albertini G, Viesca R C, Rubinstein S M, Spaepen F, Yuan C, Denolle M, Song Y-Q, Xiao L, Weitz D A
National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing, China.
School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA USA.
Nat Phys. 2024;20(4):660-665. doi: 10.1038/s41567-023-02365-0. Epub 2024 Jan 29.
Fractures are ubiquitous and can lead to the catastrophic material failure of materials. Although fracturing in a two-dimensional plane is well understood, all fractures are extended in and propagate through three-dimensional space. Moreover, their behaviour is complex. Here we show that the forward propagation of a fracture front occurs through an initial rupture, nucleated at some localized position, followed by a very rapid transverse expansion at velocities as high as the Rayleigh-wave speed. We study fracturing in a circular geometry that achieves an uninterrupted extended fracture front and use a fluid to control the loading conditions that determine the amplitude of the forward jump. We find that this amplitude correlates with the transverse velocity. Dynamic rupture simulations capture the observations for only a high transverse velocity. These results highlight the importance of transverse dynamics in the forward propagation of an extended fracture.
裂缝无处不在,可能导致材料发生灾难性的失效。尽管二维平面内的断裂已被充分理解,但所有裂缝都是在三维空间中延伸并传播的。此外,它们的行为很复杂。在这里,我们表明裂缝前缘的向前传播通过在某个局部位置成核的初始破裂发生,随后以高达瑞利波速度的速度进行非常快速的横向扩展。我们在圆形几何结构中研究断裂,该结构可实现不间断的扩展裂缝前缘,并使用流体来控制决定向前跳跃幅度的加载条件。我们发现这个幅度与横向速度相关。动态破裂模拟仅在高横向速度下才能捕捉到这些观测结果。这些结果突出了横向动力学在扩展裂缝向前传播中的重要性。