Hyman J D, Jiménez-Martínez J, Viswanathan H S, Carey J W, Porter M L, Rougier E, Karra S, Kang Q, Frash L, Chen L, Lei Z, O'Malley D, Makedonska N
Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA.
Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA
Philos Trans A Math Phys Eng Sci. 2016 Oct 13;374(2078). doi: 10.1098/rsta.2015.0426.
Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages.This article is part of the themed issue 'Energy and the subsurface'.
尽管水力压裂对能源领域产生了影响,但控制其效率和环境影响的物理机制仍未得到充分理解,部分原因是所涉及的长度尺度范围从纳米到千米。我们通过综合计算、理论和实验方法来表征页岩地层在这些尺度范围内以及不同尺度之间的流动和传输。在现场尺度上,我们使用离散裂缝网络模型来模拟基于页岩气藏现场特征的裂缝网络中水力压裂井的产量。在岩心尺度上,我们使用三轴裂缝实验和有限离散元模型来研究低渗透页岩中的动态裂缝/裂纹扩展。我们在合成和页岩岩石微模型中使用格子玻尔兹曼孔隙尺度模拟和微流体实验来研究孔隙尺度的流动和传输现象,包括多相流和流体混合。为了准确预测产量并最终优化非常规油藏的烃类开采,需要对这些多个尺度进行机理描述和整合。最后,我们讨论了二氧化碳作为替代工作流体在压裂和重新增产活动中的潜力,这超出了其环境优势。本文是主题为“能源与地下”特刊的一部分。