Porter Mark L, Jiménez-Martínez Joaquín, Martinez Ricardo, McCulloch Quinn, Carey J William, Viswanathan Hari S
Earth & Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA.
Lab Chip. 2015 Oct 21;15(20):4044-53. doi: 10.1039/c5lc00704f. Epub 2015 Sep 2.
Microfluidic investigations of flow and transport in porous and fractured media have the potential to play a significant role in the development of future subsurface energy resource technologies. However, the majority of experimental systems to date are limited in applicability due to operating conditions and/or the use of engineered material micromodels. We have developed a high pressure and temperature microfluidic experimental system that allows for direct observations of flow and transport within geo-material micromodels (e.g. rock, cement) at reservoir conditions. In this manuscript, we describe the experimental system, including our novel micromodel fabrication method that works in both geo- and engineered materials and utilizes 3-D tomography images of real fractures as micromodel templates to better represent the pore space and fracture geometries expected in subsurface formations. We present experimental results that highlight the advantages of using real-rock micromodels and discuss potential areas of research that could benefit from geo-material microfluidic investigations. The experiments include fracture-matrix interaction in which water imbibes into the shale rock matrix from etched fractures, supercritical CO2 (scCO2) displacing brine in idealized and realistic fracture patterns, and three-phase flow involving scCO2-brine-oil.
对多孔和裂隙介质中的流动与输运进行微流体研究,在未来地下能源技术的发展中可能发挥重要作用。然而,由于操作条件和/或使用工程材料微模型,迄今为止大多数实验系统的适用性受到限制。我们开发了一种高压高温微流体实验系统,该系统能够在储层条件下直接观察地质材料微模型(如岩石、水泥)内部的流动与输运情况。在本论文中,我们描述了该实验系统,包括我们新颖的微模型制造方法,该方法适用于地质材料和工程材料,并且利用真实裂隙的三维断层扫描图像作为微模型模板,以更好地呈现地下地层中预期的孔隙空间和裂隙几何形状。我们展示了突出使用真实岩石微模型优势的实验结果,并讨论了可能受益于地质材料微流体研究的潜在研究领域。实验包括裂缝 - 基质相互作用(其中水从蚀刻裂缝渗入页岩岩石基质)、超临界二氧化碳(scCO2)在理想化和实际裂缝模式中驱替盐水以及涉及scCO2 - 盐水 - 油的三相流。