Suppr超能文献

在条件模型兼容时,联合模型和全条件指定多重插补的相对效率:广义位置模型。

Relative efficiency of joint-model and full-conditional-specification multiple imputation when conditional models are compatible: The general location model.

机构信息

1 MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK.

2 School of Social and Community Medicine, University of Bristol, Bristol, UK.

出版信息

Stat Methods Med Res. 2018 Jun;27(6):1603-1614. doi: 10.1177/0962280216665872. Epub 2016 Sep 5.

Abstract

Estimating the parameters of a regression model of interest is complicated by missing data on the variables in that model. Multiple imputation is commonly used to handle these missing data. Joint model multiple imputation and full-conditional specification multiple imputation are known to yield imputed data with the same asymptotic distribution when the conditional models of full-conditional specification are compatible with that joint model. We show that this asymptotic equivalence of imputation distributions does not imply that joint model multiple imputation and full-conditional specification multiple imputation will also yield asymptotically equally efficient inference about the parameters of the model of interest, nor that they will be equally robust to misspecification of the joint model. When the conditional models used by full-conditional specification multiple imputation are linear, logistic and multinomial regressions, these are compatible with a restricted general location joint model. We show that multiple imputation using the restricted general location joint model can be substantially more asymptotically efficient than full-conditional specification multiple imputation, but this typically requires very strong associations between variables. When associations are weaker, the efficiency gain is small. Moreover, full-conditional specification multiple imputation is shown to be potentially much more robust than joint model multiple imputation using the restricted general location model to mispecification of that model when there is substantial missingness in the outcome variable.

摘要

当模型中的变量存在缺失数据时,估计感兴趣的回归模型的参数会变得复杂。常用的处理方法是多重插补。当全条件指定模型的条件模型与联合模型兼容时,已知联合模型多重插补和全条件指定多重插补会产生具有相同渐近分布的插补数据。我们表明,这种插补分布的渐近等价性并不意味着联合模型多重插补和全条件指定多重插补也将对感兴趣的模型参数进行渐近等效的推断,也不意味着它们对联合模型的指定不匹配具有相同的稳健性。当全条件指定多重插补使用的条件模型是线性、逻辑和多项回归时,这些与受限广义位置联合模型兼容。我们表明,使用受限广义位置联合模型进行多重插补可以在渐近效率上大大优于全条件指定多重插补,但这通常需要变量之间非常强的关联。当关联较弱时,效率增益很小。此外,当因变量存在大量缺失值时,全条件指定多重插补显示出比使用受限广义位置模型的联合模型多重插补具有更大的潜在稳健性。

相似文献

2
Multiple imputation for handling missing outcome data when estimating the relative risk.
BMC Med Res Methodol. 2017 Sep 6;17(1):134. doi: 10.1186/s12874-017-0414-5.
3
Handling missing data in matched case-control studies using multiple imputation.
Biometrics. 2015 Dec;71(4):1150-9. doi: 10.1111/biom.12358. Epub 2015 Aug 3.
5
A comparison of existing methods for multiple imputation in individual participant data meta-analysis.
Stat Med. 2017 Sep 30;36(22):3507-3532. doi: 10.1002/sim.7388. Epub 2017 Jul 10.
6
Multiple imputation by chained equations for systematically and sporadically missing multilevel data.
Stat Methods Med Res. 2018 Jun;27(6):1634-1649. doi: 10.1177/0962280216666564. Epub 2016 Sep 19.
7
Joint modelling rationale for chained equations.
BMC Med Res Methodol. 2014 Feb 21;14:28. doi: 10.1186/1471-2288-14-28.
8
Multiple imputation with non-additively related variables: Joint-modeling and approximations.
Stat Methods Med Res. 2018 Jun;27(6):1683-1694. doi: 10.1177/0962280216667763. Epub 2016 Sep 19.
10
Handling Multivariable Missing Data in Causal Mediation Analysis Estimating Interventional Effects.
Epidemiology. 2025 Jul 1;36(4):487-499. doi: 10.1097/EDE.0000000000001866. Epub 2025 Apr 1.

引用本文的文献

2
The impact of misclassifications and outliers on imputation methods.
J Appl Stat. 2024 Mar 5;51(14):2894-2928. doi: 10.1080/02664763.2024.2325969. eCollection 2024.
3
Stability of blood lead levels in children with low-level lead absorption.
PLoS One. 2023 Jun 23;18(6):e0287406. doi: 10.1371/journal.pone.0287406. eCollection 2023.
5
Multiple imputation of more than one environmental exposure with nondifferential measurement error.
Biostatistics. 2024 Apr 15;25(2):306-322. doi: 10.1093/biostatistics/kxad011.
6
Anxiety, Depression, and Quality of Life After Procedural Intervention for Uterine Fibroids.
J Womens Health (Larchmt). 2022 Mar;31(3):415-424. doi: 10.1089/jwh.2020.8915. Epub 2021 Jun 8.
8
A comparison of multiple imputation methods for missing data in longitudinal studies.
BMC Med Res Methodol. 2018 Dec 12;18(1):168. doi: 10.1186/s12874-018-0615-6.
9
Methods for handling longitudinal outcome processes truncated by dropout and death.
Biostatistics. 2018 Oct 1;19(4):407-425. doi: 10.1093/biostatistics/kxx045.

本文引用的文献

1
Bias and Precision of the "Multiple Imputation, Then Deletion" Method for Dealing With Missing Outcome Data.
Am J Epidemiol. 2015 Sep 15;182(6):528-34. doi: 10.1093/aje/kwv100. Epub 2015 Sep 2.
2
Joint modelling rationale for chained equations.
BMC Med Res Methodol. 2014 Feb 21;14:28. doi: 10.1186/1471-2288-14-28.
3
Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation.
Am J Epidemiol. 2010 Mar 1;171(5):624-32. doi: 10.1093/aje/kwp425. Epub 2010 Jan 27.
5
Prenatal exposures and glucose metabolism in adulthood: are effects mediated through birth weight and adiposity?
Diabetes Care. 2007 Apr;30(4):918-24. doi: 10.2337/dc06-1881. Epub 2007 Feb 2.
6
Cohort profile: 1958 British birth cohort (National Child Development Study).
Int J Epidemiol. 2006 Feb;35(1):34-41. doi: 10.1093/ije/dyi183. Epub 2005 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验