Suppr超能文献

多变量非加性相关数据的多重填补:联合建模与逼近。

Multiple imputation with non-additively related variables: Joint-modeling and approximations.

机构信息

1 Department of Biostatistics, University of Texas Health Science Center, Houston, TX, USA.

2 Department of Biostatistics, University of California Los Angeles, Los Angeles, CA, USA.

出版信息

Stat Methods Med Res. 2018 Jun;27(6):1683-1694. doi: 10.1177/0962280216667763. Epub 2016 Sep 19.

Abstract

This paper investigates multiple imputation methods for regression models with interacting continuous and binary predictors when continuous variable may be missing. Usual implementations for parametric multiple imputation assume a multivariate normal structure for the variables, which is not satisfied for a binary variable nor its interaction with a continuous variable. To accommodate interactions, missing covariates are multiply imputed from conditional distribution in a manner consistent with the joint model. Alternative imputation methods under multivariate normal assumptions are also considered as candidate approximations and evaluated in a simulation study. The results suggest that the joint modeling procedure performs generally well across a wide range of scenarios and so do the approximation methods that incorporate interactions in the model appropriately by stratification. It is critical to include interactions in the imputation model as failure to do so may result in low coverage and bias. We apply the joint modeling approach and approximation methods in the study of childhood trauma with gender × trauma interaction.

摘要

本文研究了在连续变量可能缺失的情况下,具有交互连续和二分类预测变量的回归模型的多重插补方法。参数化多重插补的常用实现假设变量具有多元正态结构,但二分类变量及其与连续变量的交互作用不满足该假设。为了适应交互作用,缺失的协变量通过与联合模型一致的条件分布进行多次插补。还考虑了在多元正态假设下的替代插补方法作为候选近似,并在模拟研究中进行了评估。结果表明,联合建模程序在广泛的场景下表现良好,适当分层纳入模型交互作用的近似方法也表现良好。在插补模型中纳入交互作用至关重要,因为不这样做可能会导致覆盖率和偏差较低。我们将联合建模方法和近似方法应用于性别与创伤交互作用的儿童创伤研究中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb1e/6991942/5495968913aa/nihms-1065347-f0001.jpg

相似文献

引用本文的文献

4
Comparing DIC and WAIC for multilevel models with missing data.比较缺失数据的多层模型中的 DIC 和 WAIC。
Behav Res Methods. 2024 Apr;56(4):2731-2750. doi: 10.3758/s13428-023-02231-0. Epub 2023 Oct 20.
8
A Bayesian Latent Variable Selection Model for Nonignorable Missingness.贝叶斯潜在变量选择模型在不可忽略缺失数据中的应用
Multivariate Behav Res. 2022 Mar-May;57(2-3):478-512. doi: 10.1080/00273171.2021.1874259. Epub 2021 Feb 2.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验