Suppr超能文献

联立方程的联合建模原理。

Joint modelling rationale for chained equations.

机构信息

School of Social and Community Medicine, University of Bristol, Bristol, UK.

出版信息

BMC Med Res Methodol. 2014 Feb 21;14:28. doi: 10.1186/1471-2288-14-28.

Abstract

BACKGROUND

Chained equations imputation is widely used in medical research. It uses a set of conditional models, so is more flexible than joint modelling imputation for the imputation of different types of variables (e.g. binary, ordinal or unordered categorical). However, chained equations imputation does not correspond to drawing from a joint distribution when the conditional models are incompatible. Concurrently with our work, other authors have shown the equivalence of the two imputation methods in finite samples.

METHODS

Taking a different approach, we prove, in finite samples, sufficient conditions for chained equations and joint modelling to yield imputations from the same predictive distribution. Further, we apply this proof in four specific cases and conduct a simulation study which explores the consequences when the conditional models are compatible but the conditions otherwise are not satisfied.

RESULTS

We provide an additional "non-informative margins" condition which, together with compatibility, is sufficient. We show that the non-informative margins condition is not satisfied, despite compatible conditional models, in a situation as simple as two continuous variables and one binary variable. Our simulation study demonstrates that as a consequence of this violation order effects can occur; that is, systematic differences depending upon the ordering of the variables in the chained equations algorithm. However, the order effects appear to be small, especially when associations between variables are weak.

CONCLUSIONS

Since chained equations is typically used in medical research for datasets with different types of variables, researchers must be aware that order effects are likely to be ubiquitous, but our results suggest they may be small enough to be negligible.

摘要

背景

连锁方程插补在医学研究中被广泛应用。它使用了一组条件模型,因此比联合建模插补更灵活,适用于不同类型的变量(如二分类、有序或无序分类变量)的插补。然而,当条件模型不兼容时,连锁方程插补并不对应于从联合分布中抽取样本。在我们的工作同时,其他作者已经在有限样本中证明了这两种插补方法的等价性。

方法

我们采用不同的方法,在有限样本中证明了连锁方程和联合建模在产生相同预测分布的插补时的充分条件。此外,我们将这一证明应用于四个具体案例,并进行了一项模拟研究,探讨了当条件模型兼容但其他条件不满足时的后果。

结果

我们提供了一个额外的“非信息性边缘”条件,该条件与兼容性一起是充分的。我们表明,尽管条件模型兼容,但在一个简单的情况,如两个连续变量和一个二分类变量,非信息性边缘条件不满足。我们的模拟研究表明,由于这种违反,可能会出现顺序效应;也就是说,根据连锁方程算法中变量的排序存在系统差异。然而,顺序效应似乎很小,尤其是当变量之间的关联较弱时。

结论

由于连锁方程通常在医学研究中用于具有不同类型变量的数据集,研究人员必须意识到顺序效应可能是普遍存在的,但我们的结果表明,它们可能小到可以忽略不计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e2c/3936896/51b5bfa8f68b/1471-2288-14-28-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验