Suppr超能文献

有氧能力和肝脏线粒体脂质氧化会改变慢性高脂饮食诱导的肝脂肪变性的易感性。

Aerobic capacity and hepatic mitochondrial lipid oxidation alters susceptibility for chronic high-fat diet-induced hepatic steatosis.

作者信息

Morris E Matthew, Meers Grace M E, Koch Lauren G, Britton Steven L, Fletcher Justin A, Fu Xiaorong, Shankar Kartik, Burgess Shawn C, Ibdah Jamal A, Rector R Scott, Thyfault John P

机构信息

Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.

Medicine and Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri.

出版信息

Am J Physiol Endocrinol Metab. 2016 Oct 1;311(4):E749-E760. doi: 10.1152/ajpendo.00178.2016. Epub 2016 Sep 6.

Abstract

Rats selectively bred for high capacity running (HCR) or low capacity running (LCR) display divergence for intrinsic aerobic capacity and hepatic mitochondrial oxidative capacity, both factors associated with susceptibility for nonalcoholic fatty liver disease. Here, we tested if HCR and LCR rats display differences in susceptibility for hepatic steatosis after 16 wk of high-fat diets (HFD) with either 45% or 60% of kcals from fat. HCR rats were protected against HFD-induced hepatic steatosis, whereas only the 60% HFD induced steatosis in LCR rats, as marked by a doubling of liver triglycerides. Hepatic complete fatty acid oxidation (FAO) and mitochondrial respiratory capacity were all lower in LCR compared with HCR rats. LCR rats also displayed lower hepatic complete and incomplete FAO in the presence of etomoxir, suggesting a reduced role for noncarnitine palmitoyltransferase-1-mediated lipid catabolism in LCR versus HCR rats. Hepatic complete FAO and mitochondrial respiration were largely unaffected by either chronic HFD; however, 60% HFD feeding markedly reduced 2-pyruvate oxidation, a marker of tricarboxylic acid (TCA) cycle flux, and mitochondrial complete FAO only in LCR rats. LCR rats displayed lower levels of hepatic long-chain acylcarnitines than HCR rats but maintained similar levels of hepatic acetyl-carnitine levels, further supporting lower rates of β-oxidation, and TCA cycle flux in LCR than HCR rats. Finally, only LCR rats displayed early reductions in TCA cycle genes after the acute initiation of a HFD. In conclusion, intrinsically high aerobic capacity confers protection against HFD-induced hepatic steatosis through elevated hepatic mitochondrial oxidative capacity.

摘要

为高运动能力(HCR)或低运动能力(LCR)而选择性培育的大鼠,在内在有氧能力和肝脏线粒体氧化能力方面存在差异,这两个因素都与非酒精性脂肪性肝病的易感性相关。在此,我们测试了HCR和LCR大鼠在摄入含45%或60%千卡脂肪的高脂饮食(HFD)16周后,肝脏脂肪变性易感性是否存在差异。HCR大鼠对HFD诱导的肝脏脂肪变性具有保护作用,而只有60%的HFD诱导LCR大鼠出现脂肪变性,肝脏甘油三酯增加一倍即为标志。与HCR大鼠相比,LCR大鼠的肝脏完全脂肪酸氧化(FAO)和线粒体呼吸能力均较低。在存在依托莫昔的情况下,LCR大鼠的肝脏完全和不完全FAO也较低,这表明与HCR大鼠相比,LCR大鼠中肉碱棕榈酰转移酶-1介导的脂质分解作用减弱。慢性HFD对肝脏完全FAO和线粒体呼吸的影响不大;然而,仅在LCR大鼠中,60%的HFD喂养显著降低了2-丙酮酸氧化(三羧酸(TCA)循环通量的标志物)和线粒体完全FAO。与HCR大鼠相比,LCR大鼠的肝脏长链酰基肉碱水平较低,但肝脏乙酰肉碱水平保持相似,这进一步支持了LCR大鼠的β-氧化和TCA循环通量低于HCR大鼠。最后,只有LCR大鼠在急性开始HFD后早期出现TCA循环基因减少。总之,内在的高有氧能力通过提高肝脏线粒体氧化能力,对HFD诱导的肝脏脂肪变性具有保护作用。

相似文献

1
Aerobic capacity and hepatic mitochondrial lipid oxidation alters susceptibility for chronic high-fat diet-induced hepatic steatosis.
Am J Physiol Endocrinol Metab. 2016 Oct 1;311(4):E749-E760. doi: 10.1152/ajpendo.00178.2016. Epub 2016 Sep 6.
2
Aerobic capacity mediates susceptibility for the transition from steatosis to steatohepatitis.
J Physiol. 2017 Jul 15;595(14):4909-4926. doi: 10.1113/JP274281. Epub 2017 Jun 27.
3
Gut microbiota are linked to increased susceptibility to hepatic steatosis in low-aerobic-capacity rats fed an acute high-fat diet.
Am J Physiol Gastrointest Liver Physiol. 2016 Jul 1;311(1):G166-79. doi: 10.1152/ajpgi.00065.2016. Epub 2016 Jun 10.
4
Intrinsic aerobic capacity impacts susceptibility to acute high-fat diet-induced hepatic steatosis.
Am J Physiol Endocrinol Metab. 2014 Aug 15;307(4):E355-64. doi: 10.1152/ajpendo.00093.2014. Epub 2014 Jun 24.
7
Ovariectomized Highly Fit Rats Are Protected against Diet-Induced Insulin Resistance.
Med Sci Sports Exerc. 2016 Jul;48(7):1259-69. doi: 10.1249/MSS.0000000000000898.
8
Divergence in aerobic capacity influences hepatic and systemic metabolic adaptations to bile acid sequestrant and short-term high-fat/sucrose feeding in rats.
Am J Physiol Regul Integr Comp Physiol. 2023 Dec 1;325(6):R712-R724. doi: 10.1152/ajpregu.00133.2023. Epub 2023 Oct 9.
9
Artificial selection for high-capacity endurance running is protective against high-fat diet-induced insulin resistance.
Am J Physiol Endocrinol Metab. 2007 Jul;293(1):E31-41. doi: 10.1152/ajpendo.00500.2006. Epub 2007 Mar 6.
10
Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity.
Am J Physiol Endocrinol Metab. 2016 Apr 1;310(7):E484-94. doi: 10.1152/ajpendo.00492.2015. Epub 2016 Jan 26.

引用本文的文献

1
Reduced liver mitochondrial energy metabolism impairs food intake regulation following gastric preloads and fasting.
Mol Metab. 2025 Jul;97:102167. doi: 10.1016/j.molmet.2025.102167. Epub 2025 May 12.
3
5
Parental cardiorespiratory fitness influences early life energetics and metabolic health.
Physiol Genomics. 2024 Feb 1;56(2):145-157. doi: 10.1152/physiolgenomics.00045.2023. Epub 2023 Nov 27.
6
Divergence in aerobic capacity and energy expenditure influence metabolic tissue mitochondrial protein synthesis rates in aged rats.
Geroscience. 2024 Apr;46(2):2207-2222. doi: 10.1007/s11357-023-00985-1. Epub 2023 Oct 26.
7
Divergence in aerobic capacity influences hepatic and systemic metabolic adaptations to bile acid sequestrant and short-term high-fat/sucrose feeding in rats.
Am J Physiol Regul Integr Comp Physiol. 2023 Dec 1;325(6):R712-R724. doi: 10.1152/ajpregu.00133.2023. Epub 2023 Oct 9.
8
Sexually dimorphic hepatic mitochondrial adaptations to exercise: a mini-review.
J Appl Physiol (1985). 2023 Mar 1;134(3):685-691. doi: 10.1152/japplphysiol.00711.2022. Epub 2023 Jan 26.

本文引用的文献

1
Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver.
J Clin Invest. 2016 Apr 1;126(4):1605. doi: 10.1172/JCI86695.
2
Mechanisms and Dynamics of Protein Acetylation in Mitochondria.
Trends Biochem Sci. 2016 Mar;41(3):231-244. doi: 10.1016/j.tibs.2015.12.006. Epub 2016 Jan 25.
3
Exercise and the Regulation of Hepatic Metabolism.
Prog Mol Biol Transl Sci. 2015;135:203-25. doi: 10.1016/bs.pmbts.2015.07.010. Epub 2015 Aug 5.
4
Time course of postprandial hepatic phosphorus metabolites in lean, obese, and type 2 diabetes patients.
Am J Clin Nutr. 2015 Nov;102(5):1051-8. doi: 10.3945/ajcn.115.107599. Epub 2015 Sep 30.
6
Treating NAFLD in OLETF rats with vigorous-intensity interval exercise training.
Med Sci Sports Exerc. 2015 Mar;47(3):556-67. doi: 10.1249/MSS.0000000000000430.
7
Intrinsic aerobic capacity impacts susceptibility to acute high-fat diet-induced hepatic steatosis.
Am J Physiol Endocrinol Metab. 2014 Aug 15;307(4):E355-64. doi: 10.1152/ajpendo.00093.2014. Epub 2014 Jun 24.
8
Tissue-specific differences in the development of insulin resistance in a mouse model for type 1 diabetes.
Diabetes. 2014 Nov;63(11):3856-67. doi: 10.2337/db13-1794. Epub 2014 Jun 10.
9
Combining metformin and aerobic exercise training in the treatment of type 2 diabetes and NAFLD in OLETF rats.
Am J Physiol Endocrinol Metab. 2014 Feb;306(3):E300-10. doi: 10.1152/ajpendo.00427.2013. Epub 2013 Dec 10.
10
Genomics and genetics in the biology of adaptation to exercise.
Compr Physiol. 2011 Jul;1(3):1603-48. doi: 10.1002/cphy.c100059.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验