Morris E Matthew, Meers Grace M E, Koch Lauren G, Britton Steven L, Fletcher Justin A, Fu Xiaorong, Shankar Kartik, Burgess Shawn C, Ibdah Jamal A, Rector R Scott, Thyfault John P
Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.
Medicine and Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri.
Am J Physiol Endocrinol Metab. 2016 Oct 1;311(4):E749-E760. doi: 10.1152/ajpendo.00178.2016. Epub 2016 Sep 6.
Rats selectively bred for high capacity running (HCR) or low capacity running (LCR) display divergence for intrinsic aerobic capacity and hepatic mitochondrial oxidative capacity, both factors associated with susceptibility for nonalcoholic fatty liver disease. Here, we tested if HCR and LCR rats display differences in susceptibility for hepatic steatosis after 16 wk of high-fat diets (HFD) with either 45% or 60% of kcals from fat. HCR rats were protected against HFD-induced hepatic steatosis, whereas only the 60% HFD induced steatosis in LCR rats, as marked by a doubling of liver triglycerides. Hepatic complete fatty acid oxidation (FAO) and mitochondrial respiratory capacity were all lower in LCR compared with HCR rats. LCR rats also displayed lower hepatic complete and incomplete FAO in the presence of etomoxir, suggesting a reduced role for noncarnitine palmitoyltransferase-1-mediated lipid catabolism in LCR versus HCR rats. Hepatic complete FAO and mitochondrial respiration were largely unaffected by either chronic HFD; however, 60% HFD feeding markedly reduced 2-pyruvate oxidation, a marker of tricarboxylic acid (TCA) cycle flux, and mitochondrial complete FAO only in LCR rats. LCR rats displayed lower levels of hepatic long-chain acylcarnitines than HCR rats but maintained similar levels of hepatic acetyl-carnitine levels, further supporting lower rates of β-oxidation, and TCA cycle flux in LCR than HCR rats. Finally, only LCR rats displayed early reductions in TCA cycle genes after the acute initiation of a HFD. In conclusion, intrinsically high aerobic capacity confers protection against HFD-induced hepatic steatosis through elevated hepatic mitochondrial oxidative capacity.
为高运动能力(HCR)或低运动能力(LCR)而选择性培育的大鼠,在内在有氧能力和肝脏线粒体氧化能力方面存在差异,这两个因素都与非酒精性脂肪性肝病的易感性相关。在此,我们测试了HCR和LCR大鼠在摄入含45%或60%千卡脂肪的高脂饮食(HFD)16周后,肝脏脂肪变性易感性是否存在差异。HCR大鼠对HFD诱导的肝脏脂肪变性具有保护作用,而只有60%的HFD诱导LCR大鼠出现脂肪变性,肝脏甘油三酯增加一倍即为标志。与HCR大鼠相比,LCR大鼠的肝脏完全脂肪酸氧化(FAO)和线粒体呼吸能力均较低。在存在依托莫昔的情况下,LCR大鼠的肝脏完全和不完全FAO也较低,这表明与HCR大鼠相比,LCR大鼠中肉碱棕榈酰转移酶-1介导的脂质分解作用减弱。慢性HFD对肝脏完全FAO和线粒体呼吸的影响不大;然而,仅在LCR大鼠中,60%的HFD喂养显著降低了2-丙酮酸氧化(三羧酸(TCA)循环通量的标志物)和线粒体完全FAO。与HCR大鼠相比,LCR大鼠的肝脏长链酰基肉碱水平较低,但肝脏乙酰肉碱水平保持相似,这进一步支持了LCR大鼠的β-氧化和TCA循环通量低于HCR大鼠。最后,只有LCR大鼠在急性开始HFD后早期出现TCA循环基因减少。总之,内在的高有氧能力通过提高肝脏线粒体氧化能力,对HFD诱导的肝脏脂肪变性具有保护作用。