Suppr超能文献

高脂饮食对高、低有氧能力雌性大鼠骨骼肌线粒体和代谢的影响。

Skeletal muscle mitochondrial and metabolic responses to a high-fat diet in female rats bred for high and low aerobic capacity.

机构信息

Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.

出版信息

Appl Physiol Nutr Metab. 2010 Apr;35(2):151-62. doi: 10.1139/H09-139.

Abstract

Rats selected artificially to be low-capacity runners (LCR) possess a metabolic syndrome phenotype that is worsened by a high-fat diet (HFD), whereas rats selected to be high-capacity runners (HCR) are protected against HFD-induced obesity and insulin resistance. This study examined whether protection against, or susceptibility to, HFD-induced insulin resistance in the HCR-LCR strains is associated with contrasting metabolic adaptations in skeletal muscle. HCR and LCR rats (generation 20; n = 5-6; maximum running distance approximately 1800 m vs. approximately 350 m, respectively (p < 0.0001)) were divided into HFD (71.6% energy from fat) or normal chow (NC) (16.7% energy from fat) groups for 7 weeks (from 24 to 31 weeks of age). Skeletal muscle (red gastrocnemius) mitochondrial-fatty acid oxidation (FAO), mitochondrial-enzyme activity, mitochondrial-morphology, peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha), and peroxisome proliferator-activated receptor delta (PPARdelta) expression and insulin sensitivity (intraperitoneal glucose tolerance tests) were measured. The HFD caused increased adiposity and reduced insulin sensitivity only in the LCR and not the HCR strain. Isolated mitochondria from the HCR skeletal muscle displayed a 2-fold-higher rate of FAO on NC, but both groups increased FAO following HFD. PGC-1alpha mRNA expression and superoxide dismutase activity were significantly reduced with the HFD in the LCR rats, but not in the HCR rats. PPARdelta expression did not differ between strains or dietary conditions. These results do not provide a clear connection between protection of insulin sensitivity and HFD-induced adaptive changes in mitochondrial function or transcriptional responses but do not dismiss the possibility that elevated mitochondrial FAO in the HCR may play a protective role.

摘要

经人工选育的低能力跑步大鼠(LCR)具有代谢综合征表型,这种表型在高脂肪饮食(HFD)的作用下会恶化,而高能力跑步大鼠(HCR)则能防止 HFD 引起的肥胖和胰岛素抵抗。本研究旨在探讨 HCR-LCR 品系对 HFD 诱导的胰岛素抵抗的保护作用或易感性是否与骨骼肌的代谢适应性改变有关。HCR 和 LCR 大鼠(第 20 代;n = 5-6;最大跑步距离分别约为 1800 m 和 350 m(p < 0.0001))被分为高脂肪饮食(HFD,71.6%的能量来自脂肪)或正常饮食(NC,16.7%的能量来自脂肪)组,进行 7 周实验(从 24 周龄到 31 周龄)。测定骨骼肌(红色腓肠肌)线粒体脂肪酸氧化(FAO)、线粒体酶活性、线粒体形态、过氧化物酶体增殖物激活受体γ共激活因子 1α(PGC-1α)和过氧化物酶体增殖物激活受体δ(PPARδ)的表达以及胰岛素敏感性(腹腔内葡萄糖耐量试验)。HFD 仅在 LCR 大鼠中引起肥胖增加和胰岛素敏感性降低,而在 HCR 大鼠中则没有。来自 HCR 骨骼肌的分离线粒体在 NC 上的 FAO 速率高 2 倍,但两组在 HFD 后 FAO 均增加。PGC-1αmRNA 表达和超氧化物歧化酶活性在 LCR 大鼠的 HFD 中显著降低,但在 HCR 大鼠中则没有。PPARδ 的表达在两种品系或饮食条件下均无差异。这些结果并没有为胰岛素敏感性的保护作用与 HFD 诱导的线粒体功能或转录反应适应性变化之间提供明确的联系,但并没有排除 HCR 中升高的线粒体 FAO 可能发挥保护作用的可能性。

相似文献

2
Ovariectomized Highly Fit Rats Are Protected against Diet-Induced Insulin Resistance.
Med Sci Sports Exerc. 2016 Jul;48(7):1259-69. doi: 10.1249/MSS.0000000000000898.
3
Interactions between the consumption of a high-fat diet and fasting in the regulation of fatty acid oxidation enzyme gene expression: an evaluation of potential mechanisms.
Am J Physiol Regul Integr Comp Physiol. 2011 Feb;300(2):R212-21. doi: 10.1152/ajpregu.00367.2010. Epub 2010 Nov 17.
4
Female rats selectively bred for high intrinsic aerobic fitness are protected from ovariectomy-associated metabolic dysfunction.
Am J Physiol Regul Integr Comp Physiol. 2015 Mar 15;308(6):R530-42. doi: 10.1152/ajpregu.00401.2014. Epub 2015 Jan 21.
5
Divergent skeletal muscle respiratory capacities in rats artificially selected for high and low running ability: a role for Nor1?
J Appl Physiol (1985). 2012 Nov;113(9):1403-12. doi: 10.1152/japplphysiol.00788.2012. Epub 2012 Aug 30.
6
Intrinsic High Aerobic Capacity in Male Rats Protects Against Diet-Induced Insulin Resistance.
Endocrinology. 2019 May 1;160(5):1179-1192. doi: 10.1210/en.2019-00118.
8
Artificial selection for high-capacity endurance running is protective against high-fat diet-induced insulin resistance.
Am J Physiol Endocrinol Metab. 2007 Jul;293(1):E31-41. doi: 10.1152/ajpendo.00500.2006. Epub 2007 Mar 6.
9
Voluntary Running Attenuates Metabolic Dysfunction in Ovariectomized Low-Fit Rats.
Med Sci Sports Exerc. 2017 Feb;49(2):254-264. doi: 10.1249/MSS.0000000000001101.
10
Aerobic capacity and hepatic mitochondrial lipid oxidation alters susceptibility for chronic high-fat diet-induced hepatic steatosis.
Am J Physiol Endocrinol Metab. 2016 Oct 1;311(4):E749-E760. doi: 10.1152/ajpendo.00178.2016. Epub 2016 Sep 6.

引用本文的文献

2
Divergence in aerobic capacity and energy expenditure influence metabolic tissue mitochondrial protein synthesis rates in aged rats.
Geroscience. 2024 Apr;46(2):2207-2222. doi: 10.1007/s11357-023-00985-1. Epub 2023 Oct 26.
3
Differential weight loss with intermittent fasting or daily calorie restriction in low- and high-fitness phenotypes.
Exp Physiol. 2021 Aug;106(8):1731-1742. doi: 10.1113/EP089434. Epub 2021 Jul 7.
4
Aerobic capacity modulates adaptive thermogenesis: Contribution of non-resting energy expenditure.
Physiol Behav. 2020 Oct 15;225:113048. doi: 10.1016/j.physbeh.2020.113048. Epub 2020 Jul 3.
6
Intrinsic High Aerobic Capacity in Male Rats Protects Against Diet-Induced Insulin Resistance.
Endocrinology. 2019 May 1;160(5):1179-1192. doi: 10.1210/en.2019-00118.
8
Vertical sleeve gastrectomy corrects metabolic perturbations in a low-exercise capacity rat model.
Mol Metab. 2018 May;11:189-196. doi: 10.1016/j.molmet.2018.02.009. Epub 2018 Feb 26.
9
Systems-level computational modeling demonstrates fuel selection switching in high capacity running and low capacity running rats.
PLoS Comput Biol. 2018 Feb 23;14(2):e1005982. doi: 10.1371/journal.pcbi.1005982. eCollection 2018 Feb.
10
Differences in Exercise Capacity and Responses to Training in 24 Inbred Mouse Strains.
Front Physiol. 2017 Nov 30;8:974. doi: 10.3389/fphys.2017.00974. eCollection 2017.

本文引用的文献

1
Chronic exposure to the herbicide, atrazine, causes mitochondrial dysfunction and insulin resistance.
PLoS One. 2009;4(4):e5186. doi: 10.1371/journal.pone.0005186. Epub 2009 Apr 13.
4
Mitochondrial reactive oxygen species generation in obese non-diabetic and type 2 diabetic participants.
Diabetologia. 2009 Apr;52(4):574-82. doi: 10.1007/s00125-009-1264-4. Epub 2009 Jan 30.
5
In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation.
Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E738-47. doi: 10.1152/ajpendo.90896.2008. Epub 2009 Jan 13.
7
Cessation of daily wheel running differentially alters fat oxidation capacity in liver, muscle, and adipose tissue.
J Appl Physiol (1985). 2009 Jan;106(1):161-8. doi: 10.1152/japplphysiol.91186.2008. Epub 2008 Oct 30.
8
Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice.
Am J Physiol Endocrinol Metab. 2008 Sep;295(3):E586-94. doi: 10.1152/ajpendo.00309.2007. Epub 2008 Jun 24.
9
High-fat diets cause insulin resistance despite an increase in muscle mitochondria.
Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7815-20. doi: 10.1073/pnas.0802057105. Epub 2008 May 28.
10
Sex-differential expression of metabolism-related genes in response to a high-fat diet.
Obesity (Silver Spring). 2008 Apr;16(4):819-26. doi: 10.1038/oby.2007.117. Epub 2008 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验