Orsi Rebecca
School of Education, Colorado State University, United States; Social Work Research Center, School of Social Work, Colorado State University, United States.
Eval Program Plann. 2017 Feb;60:277-283. doi: 10.1016/j.evalprogplan.2016.08.017. Epub 2016 Aug 28.
Concept mapping is now a commonly-used technique for articulating and evaluating programmatic outcomes. However, research regarding validity of knowledge and outcomes produced with concept mapping is sparse. The current study describes quantitative validity analyses using a concept mapping dataset. We sought to increase the validity of concept mapping evaluation results by running multiple cluster analysis methods and then using several metrics to choose from among solutions. We present four different clustering methods based on analyses using the R statistical software package: partitioning around medoids (PAM), fuzzy analysis (FANNY), agglomerative nesting (AGNES) and divisive analysis (DIANA). We then used the Dunn and Davies-Bouldin indices to assist in choosing a valid cluster solution for a concept mapping outcomes evaluation. We conclude that the validity of the outcomes map is high, based on the analyses described. Finally, we discuss areas for further concept mapping methods research.
概念图现在是一种用于阐明和评估项目成果的常用技术。然而,关于通过概念图产生的知识和成果的有效性的研究却很少。本研究描述了使用概念图数据集进行的定量有效性分析。我们试图通过运行多种聚类分析方法,然后使用几个指标从解决方案中进行选择,来提高概念图评估结果的有效性。我们基于使用R统计软件包进行的分析,提出了四种不同的聚类方法:围绕中心点划分法(PAM)、模糊分析法(FANNY)、凝聚嵌套法(AGNES)和分裂分析法(DIANA)。然后,我们使用邓恩指数和戴维斯-布尔丁指数来协助为概念图成果评估选择一个有效的聚类解决方案。基于所描述的分析,我们得出结论,成果图的有效性很高。最后,我们讨论了概念图方法进一步研究的领域。