Suppr超能文献

癌症中剪接的治疗靶向作用

Therapeutic targeting of splicing in cancer.

作者信息

Lee Stanley Chun-Wei, Abdel-Wahab Omar

机构信息

Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA.

Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

出版信息

Nat Med. 2016 Sep 7;22(9):976-86. doi: 10.1038/nm.4165.

Abstract

Recent studies have highlighted that splicing patterns are frequently altered in cancer and that mutations in genes encoding spliceosomal proteins, as well as mutations affecting the splicing of key cancer-associated genes, are enriched in cancer. In parallel, there is also accumulating evidence that several molecular subtypes of cancer are highly dependent on splicing function for cell survival. These findings have resulted in a growing interest in targeting splicing catalysis, splicing regulatory proteins, and/or specific key altered splicing events in the treatment of cancer. Here we present strategies that exist and that are in development to target altered dependency on the spliceosome, as well as aberrant splicing, in cancer. These include drugs to target global splicing in cancer subtypes that are preferentially dependent on wild-type splicing for survival, methods to alter post-translational modifications of splicing-regulating proteins, and strategies to modulate pathologic splicing events and protein-RNA interactions in cancer.

摘要

近期研究强调,剪接模式在癌症中经常发生改变,编码剪接体蛋白的基因突变以及影响关键癌症相关基因剪接的突变在癌症中富集。与此同时,也有越来越多的证据表明,癌症的几种分子亚型在细胞存活方面高度依赖剪接功能。这些发现使得人们对在癌症治疗中靶向剪接催化、剪接调节蛋白和/或特定关键的异常剪接事件的兴趣日益浓厚。在此,我们介绍了针对癌症中对剪接体改变的依赖性以及异常剪接所存在的和正在开发的策略。这些策略包括针对那些优先依赖野生型剪接以存活的癌症亚型进行全局剪接靶向的药物、改变剪接调节蛋白翻译后修饰的方法,以及调节癌症中病理性剪接事件和蛋白质-RNA相互作用的策略。

相似文献

1
Therapeutic targeting of splicing in cancer.
Nat Med. 2016 Sep 7;22(9):976-86. doi: 10.1038/nm.4165.
2
Molecular Pathways: Understanding and Targeting Mutant Spliceosomal Proteins.
Clin Cancer Res. 2017 Jan 15;23(2):336-341. doi: 10.1158/1078-0432.CCR-16-0131. Epub 2016 Nov 10.
3
Aberrant RNA splicing and therapeutic opportunities in cancers.
Cancer Sci. 2022 Feb;113(2):373-381. doi: 10.1111/cas.15213. Epub 2021 Nov 30.
4
RNA components of the spliceosome regulate tissue- and cancer-specific alternative splicing.
Genome Res. 2019 Oct;29(10):1591-1604. doi: 10.1101/gr.246678.118. Epub 2019 Aug 21.
5
Therapeutic Targeting of RNA Splicing in Cancer.
Genes (Basel). 2023 Jun 29;14(7):1378. doi: 10.3390/genes14071378.
6
Spliceosomal factor mutations and mis-splicing in MDS.
Best Pract Res Clin Haematol. 2020 Sep;33(3):101199. doi: 10.1016/j.beha.2020.101199. Epub 2020 Aug 1.
7
Splicing-factor alterations in cancers.
RNA. 2016 Sep;22(9):1285-301. doi: 10.1261/rna.057919.116.
8
Targeting splicing factors for cancer therapy.
RNA. 2023 Apr;29(4):506-515. doi: 10.1261/rna.079585.123. Epub 2023 Jan 25.
9
Alternative splicing and cancer: a systematic review.
Signal Transduct Target Ther. 2021 Feb 24;6(1):78. doi: 10.1038/s41392-021-00486-7.
10
SnapShot: Splicing Alterations in Cancer.
Cell. 2020 Jan 9;180(1):208-208.e1. doi: 10.1016/j.cell.2019.12.011.

引用本文的文献

1
NXF1 suppresses progression of endometrial cancer by interacting with the SRSF3 to regulate SP4 splicing.
iScience. 2025 Jul 22;28(8):113113. doi: 10.1016/j.isci.2025.113113. eCollection 2025 Aug 15.
2
RNA splicing: Novel star in pulmonary diseases with a treatment perspective.
Acta Pharm Sin B. 2025 May;15(5):2301-2322. doi: 10.1016/j.apsb.2025.03.023. Epub 2025 Mar 13.
3
Epigenetic Regulation and Therapeutic Targeting of Alternative Splicing Dysregulation in Cancer.
Pharmaceuticals (Basel). 2025 May 12;18(5):713. doi: 10.3390/ph18050713.
4
Targeting SNRPE to Induce Pyroptosis Enhances Antitumor Immunity in Breast Cancer.
Int J Med Sci. 2025 Apr 28;22(10):2419-2433. doi: 10.7150/ijms.109171. eCollection 2025.
5
Aberrant Splicing as a Mechanism for Resistance to Cancer Therapies.
Cancers (Basel). 2025 Apr 21;17(8):1381. doi: 10.3390/cancers17081381.
7
Targeting the RBM39-MEK5 axis synergizes with bortezomib to inhibit the malignant growth of multiple myeloma.
Blood Adv. 2025 Apr 22;9(8):1991-2005. doi: 10.1182/bloodadvances.2025015815.
9
SF3B1: from core splicing factor to oncogenic driver.
RNA. 2025 Feb 19;31(3):314-332. doi: 10.1261/rna.080368.124.

本文引用的文献

1
Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5.
Science. 2016 Mar 11;351(6278):1208-13. doi: 10.1126/science.aad5944. Epub 2016 Feb 11.
2
MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells.
Science. 2016 Mar 11;351(6278):1214-8. doi: 10.1126/science.aad5214. Epub 2016 Feb 11.
4
Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution.
Nature. 2016 Feb 18;530(7590):298-302. doi: 10.1038/nature16940. Epub 2016 Feb 1.
5
The 3.8 Å structure of the U4/U6.U5 tri-snRNP: Insights into spliceosome assembly and catalysis.
Science. 2016 Jan 29;351(6272):466-75. doi: 10.1126/science.aad6466. Epub 2016 Jan 7.
6
Interchangeable SF3B1 inhibitors interfere with pre-mRNA splicing at multiple stages.
RNA. 2016 Mar;22(3):350-9. doi: 10.1261/rna.053108.115. Epub 2016 Jan 7.
7
Cancer-Associated SF3B1 Hotspot Mutations Induce Cryptic 3' Splice Site Selection through Use of a Different Branch Point.
Cell Rep. 2015 Nov 3;13(5):1033-45. doi: 10.1016/j.celrep.2015.09.053. Epub 2015 Oct 22.
8
Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy.
Cancer Discov. 2015 Dec;5(12):1282-95. doi: 10.1158/2159-8290.CD-15-1020. Epub 2015 Oct 29.
9
Intron retention is a widespread mechanism of tumor-suppressor inactivation.
Nat Genet. 2015 Nov;47(11):1242-8. doi: 10.1038/ng.3414. Epub 2015 Oct 5.
10
SRSF1-Regulated Alternative Splicing in Breast Cancer.
Mol Cell. 2015 Oct 1;60(1):105-17. doi: 10.1016/j.molcel.2015.09.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验