Willemsen Anouk, Zwart Mark P, Higueras Pablo, Sardanyés Josep, Elena Santiago F
Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, València, Spain Present address: MIVEGEC (UMR CNRS 5290, IRD 224, UM), National Center for Scientific Research (CNRS), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, Cedex 5, France
Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, València, Spain Present address: Institute of Theoretical Physics, University of Cologne, Zülpicher Straße 77, 50937 Cologne, Germany.
Genome Biol Evol. 2016 Oct 12;8(9):3065-3082. doi: 10.1093/gbe/evw219.
One of the striking features of many eukaryotes is the apparent amount of redundancy in coding and non-coding elements of their genomes. Despite the possible evolutionary advantages, there are fewer examples of redundant sequences in viral genomes, particularly those with RNA genomes. The factors constraining the maintenance of redundant sequences in present-day RNA virus genomes are not well known. Here, we use Tobacco etch virus, a plant RNA virus, to investigate the stability of genetically redundant sequences by generating viruses with potentially beneficial gene duplications. Subsequently, we tested the viability of these viruses and performed experimental evolution. We found that all gene duplication events resulted in a loss of viability or in a significant reduction in viral fitness. Moreover, upon analyzing the genomes of the evolved viruses, we always observed the deletion of the duplicated gene copy and maintenance of the ancestral copy. Interestingly, there were clear differences in the deletion dynamics of the duplicated gene associated with the passage duration and the size and position of the duplicated copy. Based on the experimental data, we developed a mathematical model to characterize the stability of genetically redundant sequences, and showed that fitness effects are not enough to predict genomic stability. A context-dependent recombination rate is also required, with the context being the duplicated gene and its position. Our results therefore demonstrate experimentally the deleterious nature of gene duplications in RNA viruses. Beside previously described constraints on genome size, we identified additional factors that reduce the likelihood of the maintenance of duplicated genes.
许多真核生物的一个显著特征是其基因组的编码和非编码元件中存在明显的冗余现象。尽管可能具有进化优势,但病毒基因组中冗余序列的例子较少,尤其是那些具有RNA基因组的病毒。目前尚不清楚限制RNA病毒基因组中冗余序列维持的因素。在这里,我们使用烟草蚀纹病毒(一种植物RNA病毒),通过产生具有潜在有益基因重复的病毒来研究基因冗余序列的稳定性。随后,我们测试了这些病毒的活力并进行了实验进化。我们发现所有基因重复事件都会导致活力丧失或病毒适应性显著降低。此外,在分析进化后病毒的基因组时,我们总是观察到重复基因拷贝的缺失以及祖先拷贝的保留。有趣的是,与传代时间以及重复拷贝的大小和位置相关的重复基因的缺失动态存在明显差异。基于实验数据,我们开发了一个数学模型来描述基因冗余序列的稳定性,并表明适应性效应不足以预测基因组稳定性。还需要一个依赖于上下文的重组率,这里的上下文是重复基因及其位置。因此,我们的结果通过实验证明了RNA病毒中基因重复的有害性质。除了先前描述的对基因组大小的限制外,我们还确定了其他降低重复基因保留可能性的因素。