Jackson Dan, Bowden Jack
MRC Biostatistics Unit, Cambridge, UK.
BMC Med Res Methodol. 2016 Sep 7;16(1):118. doi: 10.1186/s12874-016-0219-y.
Confidence intervals for the between study variance are useful in random-effects meta-analyses because they quantify the uncertainty in the corresponding point estimates. Methods for calculating these confidence intervals have been developed that are based on inverting hypothesis tests using generalised heterogeneity statistics. Whilst, under the random effects model, these new methods furnish confidence intervals with the correct coverage, the resulting intervals are usually very wide, making them uninformative.
We discuss a simple strategy for obtaining 95 % confidence intervals for the between-study variance with a markedly reduced width, whilst retaining the nominal coverage probability. Specifically, we consider the possibility of using methods based on generalised heterogeneity statistics with unequal tail probabilities, where the tail probability used to compute the upper bound is greater than 2.5 %. This idea is assessed using four real examples and a variety of simulation studies. Supporting analytical results are also obtained.
Our results provide evidence that using unequal tail probabilities can result in shorter 95 % confidence intervals for the between-study variance. We also show some further results for a real example that illustrates how shorter confidence intervals for the between-study variance can be useful when performing sensitivity analyses for the average effect, which is usually the parameter of primary interest.
We conclude that using unequal tail probabilities when computing 95 % confidence intervals for the between-study variance, when using methods based on generalised heterogeneity statistics, can result in shorter confidence intervals. We suggest that those who find the case for using unequal tail probabilities convincing should use the '1-4 % split', where greater tail probability is allocated to the upper confidence bound. The 'width-optimal' interval that we present deserves further investigation.
研究间方差的置信区间在随机效应荟萃分析中很有用,因为它们量化了相应点估计中的不确定性。已经开发出基于使用广义异质性统计量进行假设检验反演来计算这些置信区间的方法。虽然在随机效应模型下,这些新方法提供的置信区间具有正确的覆盖率,但所得区间通常非常宽,从而使其信息性不足。
我们讨论了一种简单策略,用于获得研究间方差的95%置信区间,其宽度显著减小,同时保持名义覆盖概率。具体而言,我们考虑使用基于具有不等尾概率的广义异质性统计量的方法的可能性,其中用于计算上限的尾概率大于2.5%。使用四个实际例子和各种模拟研究对这一想法进行了评估。还获得了支持性的分析结果。
我们的结果表明,使用不等尾概率可使研究间方差的95%置信区间更短。我们还给出了一个实际例子的一些进一步结果,说明了在对通常是主要关注参数的平均效应进行敏感性分析时,研究间方差的较短置信区间如何有用。
我们得出结论,在使用基于广义异质性统计量的方法计算研究间方差的95%置信区间时,使用不等尾概率可得到更短的置信区间。我们建议,那些认为使用不等尾概率有说服力的人应采用“1 - 4%分割”,即将更大的尾概率分配给上置信界。我们提出的“宽度最优”区间值得进一步研究。