Suppr超能文献

高频神经活动可预测模糊语音流中的单词解析。

High-frequency neural activity predicts word parsing in ambiguous speech streams.

作者信息

Kösem Anne, Basirat Anahita, Azizi Leila, van Wassenhove Virginie

机构信息

Cognitive Neuroimaging Unit, CEA DRF/I2BM, Institut National de la Santé et de la Recherche Médicale, Université Paris-Sud, Université Paris-Saclay, Gif/Yvette, France;

Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.

出版信息

J Neurophysiol. 2016 Dec 1;116(6):2497-2512. doi: 10.1152/jn.00074.2016. Epub 2016 Sep 7.

Abstract

During speech listening, the brain parses a continuous acoustic stream of information into computational units (e.g., syllables or words) necessary for speech comprehension. Recent neuroscientific hypotheses have proposed that neural oscillations contribute to speech parsing, but whether they do so on the basis of acoustic cues (bottom-up acoustic parsing) or as a function of available linguistic representations (top-down linguistic parsing) is unknown. In this magnetoencephalography study, we contrasted acoustic and linguistic parsing using bistable speech sequences. While listening to the speech sequences, participants were asked to maintain one of the two possible speech percepts through volitional control. We predicted that the tracking of speech dynamics by neural oscillations would not only follow the acoustic properties but also shift in time according to the participant's conscious speech percept. Our results show that the latency of high-frequency activity (specifically, beta and gamma bands) varied as a function of the perceptual report. In contrast, the phase of low-frequency oscillations was not strongly affected by top-down control. Whereas changes in low-frequency neural oscillations were compatible with the encoding of prelexical segmentation cues, high-frequency activity specifically informed on an individual's conscious speech percept.

摘要

在言语聆听过程中,大脑会将连续的声学信息流解析为言语理解所需的计算单元(如音节或单词)。最近的神经科学假说提出,神经振荡有助于言语解析,但它们是基于声学线索(自下而上的声学解析)还是作为可用语言表征的函数(自上而下的语言解析)来实现这一点尚不清楚。在这项脑磁图研究中,我们使用双稳态言语序列对比了声学解析和语言解析。在聆听言语序列时,要求参与者通过自主控制维持两种可能的言语感知之一。我们预测,神经振荡对言语动态的追踪不仅会遵循声学特性,还会根据参与者有意识的言语感知在时间上发生变化。我们的结果表明,高频活动(具体为β和γ频段)的潜伏期会随感知报告而变化。相比之下,低频振荡的相位受自上而下控制的影响不大。虽然低频神经振荡的变化与词汇前分割线索的编码一致,但高频活动则具体反映了个体有意识的言语感知。

相似文献

1
High-frequency neural activity predicts word parsing in ambiguous speech streams.
J Neurophysiol. 2016 Dec 1;116(6):2497-2512. doi: 10.1152/jn.00074.2016. Epub 2016 Sep 7.
2
Phase-locked responses to speech in human auditory cortex are enhanced during comprehension.
Cereb Cortex. 2013 Jun;23(6):1378-87. doi: 10.1093/cercor/bhs118. Epub 2012 May 17.
3
Dissociating prosodic from syntactic delta activity during natural speech comprehension.
Curr Biol. 2024 Aug 5;34(15):3537-3549.e5. doi: 10.1016/j.cub.2024.06.072. Epub 2024 Jul 23.
5
Frequency-specific brain dynamics related to prediction during language comprehension.
Neuroimage. 2019 Sep;198:283-295. doi: 10.1016/j.neuroimage.2019.04.083. Epub 2019 May 15.
6
Cortical tracking of hierarchical linguistic structures in connected speech.
Nat Neurosci. 2016 Jan;19(1):158-64. doi: 10.1038/nn.4186. Epub 2015 Dec 7.
7
θ-Band and β-Band Neural Activity Reflects Independent Syllable Tracking and Comprehension of Time-Compressed Speech.
J Neurosci. 2017 Aug 16;37(33):7930-7938. doi: 10.1523/JNEUROSCI.2882-16.2017. Epub 2017 Jul 20.
8
Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing.
Neuroimage. 2014 Jan 15;85 Pt 2(0 2):761-8. doi: 10.1016/j.neuroimage.2013.06.035. Epub 2013 Jun 19.
9
Naturalistic Spoken Language Comprehension Is Supported by Alpha and Beta Oscillations.
J Neurosci. 2023 May 17;43(20):3718-3732. doi: 10.1523/JNEUROSCI.1500-22.2023. Epub 2023 Apr 14.

引用本文的文献

2
Exploring the Interplay Between Language Comprehension and Cortical Tracking: The Bilingual Test Case.
Neurobiol Lang (Camb). 2024 Jun 3;5(2):484-496. doi: 10.1162/nol_a_00141. eCollection 2024.
3
Characterizing endogenous delta oscillations in human MEG.
Sci Rep. 2023 Jul 7;13(1):11031. doi: 10.1038/s41598-023-37514-1.
4
Dynamics of Functional Networks for Syllable and Word-Level Processing.
Neurobiol Lang (Camb). 2023 Mar 8;4(1):120-144. doi: 10.1162/nol_a_00089. eCollection 2023.
5
Naturalistic Spoken Language Comprehension Is Supported by Alpha and Beta Oscillations.
J Neurosci. 2023 May 17;43(20):3718-3732. doi: 10.1523/JNEUROSCI.1500-22.2023. Epub 2023 Apr 14.
6
Distracting linguistic information impairs neural tracking of attended speech.
Curr Res Neurobiol. 2022 May 28;3:100043. doi: 10.1016/j.crneur.2022.100043. eCollection 2022.
7
9
Human EEG and Recurrent Neural Networks Exhibit Common Temporal Dynamics During Speech Recognition.
Front Syst Neurosci. 2021 Jul 8;15:617605. doi: 10.3389/fnsys.2021.617605. eCollection 2021.
10
Listening to speech with a guinea pig-to-human brain-to-brain interface.
Sci Rep. 2021 Jun 10;11(1):12231. doi: 10.1038/s41598-021-90823-1.

本文引用的文献

1
Oscillatory phase shapes syllable perception.
Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):15833-7. doi: 10.1073/pnas.1517519112. Epub 2015 Dec 14.
2
Cortical tracking of hierarchical linguistic structures in connected speech.
Nat Neurosci. 2016 Jan;19(1):158-64. doi: 10.1038/nn.4186. Epub 2015 Dec 7.
3
Neural Cross-Frequency Coupling: Connecting Architectures, Mechanisms, and Functions.
Trends Neurosci. 2015 Nov;38(11):725-740. doi: 10.1016/j.tins.2015.09.001.
4
Irregular Speech Rate Dissociates Auditory Cortical Entrainment, Evoked Responses, and Frontal Alpha.
J Neurosci. 2015 Nov 4;35(44):14691-701. doi: 10.1523/JNEUROSCI.2243-15.2015.
5
Low-Frequency Cortical Entrainment to Speech Reflects Phoneme-Level Processing.
Curr Biol. 2015 Oct 5;25(19):2457-65. doi: 10.1016/j.cub.2015.08.030. Epub 2015 Sep 24.
6
EEG oscillations entrain their phase to high-level features of speech sound.
Neuroimage. 2016 Jan 1;124(Pt A):16-23. doi: 10.1016/j.neuroimage.2015.08.054. Epub 2015 Sep 1.
7
Frontal top-down signals increase coupling of auditory low-frequency oscillations to continuous speech in human listeners.
Curr Biol. 2015 Jun 15;25(12):1649-53. doi: 10.1016/j.cub.2015.04.049. Epub 2015 May 28.
8
Speech encoding by coupled cortical theta and gamma oscillations.
Elife. 2015 May 29;4:e06213. doi: 10.7554/eLife.06213.
9
The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts.
Nat Neurosci. 2015 Jun;18(6):903-11. doi: 10.1038/nn.4021. Epub 2015 May 18.
10
The effects of selective attention and speech acoustics on neural speech-tracking in a multi-talker scene.
Cortex. 2015 Jul;68:144-54. doi: 10.1016/j.cortex.2014.12.014. Epub 2015 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验