Suppr超能文献

Pten通过调节Akt、Tgfβ和Erk信号通路来调控视网膜无长突细胞数量。

Pten Regulates Retinal Amacrine Cell Number by Modulating Akt, Tgfβ, and Erk Signaling.

作者信息

Tachibana Nobuhiko, Cantrup Robert, Dixit Rajiv, Touahri Yacine, Kaushik Gaurav, Zinyk Dawn, Daftarian Narsis, Biernaskie Jeff, McFarlane Sarah, Schuurmans Carol

机构信息

Departments of Biochemistry and Molecular Biology and Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada.

Departments of Biochemistry and Molecular Biology and.

出版信息

J Neurosci. 2016 Sep 7;36(36):9454-71. doi: 10.1523/JNEUROSCI.0936-16.2016.

Abstract

UNLABELLED

All tissues are genetically programmed to acquire an optimal size that is defined by total cell number and individual cellular dimensions. The retina contains stereotyped proportions of one glial and six neuronal cell types that are generated in overlapping waves. How multipotent retinal progenitors know when to switch from making one cell type to the next so that appropriate numbers of each cell type are generated is poorly understood. Pten is a phosphatase that controls progenitor cell proliferation and differentiation in several lineages. Here, using a conditional loss-of-function strategy, we found that Pten regulates retinal cell division and is required to produce the full complement of rod photoreceptors and amacrine cells in mouse. We focused on amacrine cell number control, identifying three downstream Pten effector pathways. First, phosphoinositide 3-kinase/Akt signaling is hyperactivated in Pten conditional knock-out (cKO) retinas, and misexpression of constitutively active Akt (Akt-CA) in retinal explants phenocopies the reduction in amacrine cell production observed in Pten cKOs. Second, Akt-CA activates Tgfβ signaling in retinal explants, which is a negative feedback pathway for amacrine cell production. Accordingly, Tgfβ signaling is elevated in Pten cKO retinas, and epistatic analyses placed Pten downstream of TgfβRII in amacrine cell number control. Finally, Pten regulates Raf/Mek/Erk signaling levels to promote the differentiation of all amacrine cell subtypes, which are each reduced in number in Pten cKOs. Pten is thus a positive regulator of amacrine cell production, acting via multiple downstream pathways, highlighting its diverse actions as a mediator of cell number control.

SIGNIFICANCE STATEMENT

Despite the importance of size for optimal organ function, how individual cell types are generated in correct proportions is poorly understood. There are several ways to control cell number, including readouts of organ function (e.g., secreted hormones reach functional levels when enough cells are made) or counting of cell divisions or cell number. The latter applies to the retina, where cell number is regulated by negative feedback signals, which arrest differentiation of particular cell types at threshold levels. Herein, we show that Pten is a critical regulator of amacrine cell number in the retina, acting via multiple downstream pathways. Our studies provide molecular insights into how PTEN loss in humans may lead to uncontrolled cell division in several pathological conditions.

摘要

未标记

所有组织都经过基因编程以获得由总细胞数和单个细胞尺寸定义的最佳大小。视网膜包含由一种神经胶质细胞和六种神经元细胞类型组成的固定比例,这些细胞类型在重叠的波中产生。多能视网膜祖细胞如何知道何时从产生一种细胞类型切换到下一种细胞类型,从而产生每种细胞类型的适当数量,目前还知之甚少。Pten是一种磷酸酶,可控制多个谱系中祖细胞的增殖和分化。在这里,我们使用条件性功能丧失策略发现,Pten调节视网膜细胞分裂,并且是在小鼠中产生完整数量的视杆光感受器和无长突细胞所必需的。我们专注于无长突细胞数量的控制,确定了三个下游Pten效应通路。首先,磷酸肌醇3-激酶/Akt信号在Pten条件性敲除(cKO)视网膜中被过度激活,并且在视网膜外植体中组成型活性Akt(Akt-CA)的错误表达模拟了在Pten cKO中观察到的无长突细胞产生减少的现象。其次,Akt-CA在视网膜外植体中激活Tgfβ信号,这是无长突细胞产生的负反馈通路。因此,Tgfβ信号在Pten cKO视网膜中升高,并且上位性分析将Pten置于无长突细胞数量控制中TgfβRII的下游。最后,Pten调节Raf/Mek/Erk信号水平以促进所有无长突细胞亚型的分化,这些亚型在Pten cKO中的数量均减少。因此,Pten是无长突细胞产生的正调节因子,通过多个下游通路发挥作用,突出了其作为细胞数量控制介质的多种作用。

意义声明

尽管大小对于最佳器官功能很重要,但对于如何以正确比例产生单个细胞类型仍知之甚少。有几种控制细胞数量的方法,包括器官功能的读数(例如,当产生足够数量的细胞时,分泌的激素达到功能水平)或细胞分裂或细胞数量的计数。后者适用于视网膜,其中细胞数量由负反馈信号调节,该信号在阈值水平阻止特定细胞类型的分化。在此,我们表明Pten是视网膜中无长突细胞数量的关键调节因子,通过多个下游通路发挥作用。我们的研究为人类PTEN缺失如何在几种病理情况下导致不受控制的细胞分裂提供了分子见解。

相似文献

1
Pten Regulates Retinal Amacrine Cell Number by Modulating Akt, Tgfβ, and Erk Signaling.
J Neurosci. 2016 Sep 7;36(36):9454-71. doi: 10.1523/JNEUROSCI.0936-16.2016.
3
PTEN regulates retinal interneuron morphogenesis and synaptic layer formation.
Mol Cell Neurosci. 2012 Feb;49(2):171-83. doi: 10.1016/j.mcn.2011.11.007. Epub 2011 Dec 4.
4
Cell-type specific roles for PTEN in establishing a functional retinal architecture.
PLoS One. 2012;7(3):e32795. doi: 10.1371/journal.pone.0032795. Epub 2012 Mar 5.
5
Pten regulates endocytic trafficking of cell adhesion and Wnt signaling molecules to pattern the retina.
Cell Rep. 2024 Apr 23;43(4):114005. doi: 10.1016/j.celrep.2024.114005. Epub 2024 Mar 27.
7
Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance.
Adv Enzyme Regul. 2006;46:249-79. doi: 10.1016/j.advenzreg.2006.01.004. Epub 2006 Jul 18.
9
Forkhead box N4 (Foxn4) activates Dll4-Notch signaling to suppress photoreceptor cell fates of early retinal progenitors.
Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):E553-62. doi: 10.1073/pnas.1115767109. Epub 2012 Feb 8.
10
The role of Zhx2 transcription factor in bipolar cell differentiation during mouse retinal development.
Biochem Biophys Res Commun. 2018 Sep 18;503(4):3023-3030. doi: 10.1016/j.bbrc.2018.08.088. Epub 2018 Aug 23.

引用本文的文献

1
PTEN regulates starburst amacrine cell dendrite morphology during development.
bioRxiv. 2025 May 8:2025.05.08.652956. doi: 10.1101/2025.05.08.652956.
3
Pten Loss Triggers Progressive Photoreceptor Degeneration in an mTORC1-Independent Manner.
Invest Ophthalmol Vis Sci. 2025 Mar 3;66(3):45. doi: 10.1167/iovs.66.3.45.
5
Pten regulates endocytic trafficking of cell adhesion and Wnt signaling molecules to pattern the retina.
Cell Rep. 2024 Apr 23;43(4):114005. doi: 10.1016/j.celrep.2024.114005. Epub 2024 Mar 27.
6
Chemical signaling in the developing avian retina: Focus on cyclic AMP and AKT-dependent pathways.
Front Cell Dev Biol. 2022 Dec 9;10:1058925. doi: 10.3389/fcell.2022.1058925. eCollection 2022.
7
Adamts10 controls transforming growth factor family signaling that contributes to retinal ganglion cell development.
Front Mol Biosci. 2022 Sep 6;9:989851. doi: 10.3389/fmolb.2022.989851. eCollection 2022.
8
Beyond Genetics: The Role of Metabolism in Photoreceptor Survival, Development and Repair.
Front Cell Dev Biol. 2022 May 18;10:887764. doi: 10.3389/fcell.2022.887764. eCollection 2022.
9
Regulation of retinal amacrine cell generation by miR-216b and Foxn3.
Development. 2022 Jan 15;149(2). doi: 10.1242/dev.199484. Epub 2022 Jan 17.
10
PTEN Expression Regulates Gap Junction Connectivity in the Retina.
Front Neuroanat. 2021 May 20;15:629244. doi: 10.3389/fnana.2021.629244. eCollection 2021.

本文引用的文献

1
Matters of context guide future research in TGFβ superfamily signaling.
Sci Signal. 2015 Oct 20;8(399):re10. doi: 10.1126/scisignal.aad0416.
2
Class I PI 3-kinases: Function and evolution.
Adv Biol Regul. 2015 Sep;59:53-64. doi: 10.1016/j.jbior.2015.05.002. Epub 2015 Jun 20.
4
A comparison of some organizational characteristics of the mouse central retina and the human macula.
PLoS One. 2015 Apr 29;10(4):e0125631. doi: 10.1371/journal.pone.0125631. eCollection 2015.
5
Functionally distinct groups of inherited PTEN mutations in autism and tumour syndromes.
J Med Genet. 2015 Feb;52(2):128-34. doi: 10.1136/jmedgenet-2014-102803. Epub 2014 Dec 19.
6
Development of Retinal Amacrine Cells and Their Dendritic Stratification.
Curr Ophthalmol Rep. 2014 Sep 1;2(3):100-106. doi: 10.1007/s40135-014-0048-2.
7
Gene expression is dynamically regulated in retinal progenitor cells prior to and during overt cellular differentiation.
Gene Expr Patterns. 2014 Jan;14(1):42-54. doi: 10.1016/j.gep.2013.10.003. Epub 2013 Oct 19.
10
How variable clones build an invariant retina.
Neuron. 2012 Sep 6;75(5):786-98. doi: 10.1016/j.neuron.2012.06.033.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验