Suppr超能文献

通过连续液体界面生产一步法制造计算设计的微针

Single-Step Fabrication of Computationally Designed Microneedles by Continuous Liquid Interface Production.

作者信息

Johnson Ashley R, Caudill Cassie L, Tumbleston John R, Bloomquist Cameron J, Moga Katherine A, Ermoshkin Alexander, Shirvanyants David, Mecham Sue J, Luft J Christopher, DeSimone Joseph M

机构信息

Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States of America.

Department of Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27510, United States of America.

出版信息

PLoS One. 2016 Sep 8;11(9):e0162518. doi: 10.1371/journal.pone.0162518. eCollection 2016.

Abstract

Microneedles, arrays of micron-sized needles that painlessly puncture the skin, enable transdermal delivery of medications that are difficult to deliver using more traditional routes. Many important design parameters, such as microneedle size, shape, spacing, and composition, are known to influence efficacy, but are notoriously difficult to alter due to the complex nature of microfabrication techniques. Herein, we utilize a novel additive manufacturing ("3D printing") technique called Continuous Liquid Interface Production (CLIP) to rapidly prototype sharp microneedles with tuneable geometries (size, shape, aspect ratio, spacing). This technology allows for mold-independent, one-step manufacturing of microneedle arrays of virtually any design in less than 10 minutes per patch. Square pyramidal CLIP microneedles composed of trimethylolpropane triacrylate, polyacrylic acid and photopolymerizable derivatives of polyethylene glycol and polycaprolactone were fabricated to demonstrate the range of materials that can be utilized within this platform for encapsulating and controlling the release of therapeutics. These CLIP microneedles effectively pierced murine skin ex vivo and released the fluorescent drug surrogate rhodamine.

摘要

微针是由微米级针头组成的阵列,能够无痛穿透皮肤,实现经皮给药,而许多药物采用传统给药途径很难实现经皮给药。已知许多重要的设计参数,如微针的尺寸、形状、间距和组成,都会影响疗效,但由于微制造技术的复杂性,这些参数很难改变。在此,我们利用一种名为连续液体界面生产(CLIP)的新型增材制造(“3D打印”)技术,快速制作出具有可调几何形状(尺寸、形状、纵横比、间距)的尖锐微针。该技术无需模具,每片微针阵列只需不到10分钟即可一步制造出几乎任何设计的微针阵列。制作了由三羟甲基丙烷三丙烯酸酯、聚丙烯酸以及聚乙二醇和聚己内酯的可光聚合衍生物组成的方形金字塔形CLIP微针,以展示该平台可用于封装和控制治疗药物释放的材料范围。这些CLIP微针在体外有效刺穿了小鼠皮肤,并释放出荧光药物替代物罗丹明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c7c/5015976/15552f7c1b5f/pone.0162518.g001.jpg

相似文献

1
Single-Step Fabrication of Computationally Designed Microneedles by Continuous Liquid Interface Production.
PLoS One. 2016 Sep 8;11(9):e0162518. doi: 10.1371/journal.pone.0162518. eCollection 2016.
2
Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery.
J Control Release. 2018 Aug 28;284:122-132. doi: 10.1016/j.jconrel.2018.05.042. Epub 2018 Jun 9.
3
Production of dissolvable microneedles using an atomised spray process: effect of microneedle composition on skin penetration.
Eur J Pharm Biopharm. 2014 Feb;86(2):200-11. doi: 10.1016/j.ejpb.2013.04.023. Epub 2013 May 29.
4
A simple method of microneedle array fabrication for transdermal drug delivery.
Drug Dev Ind Pharm. 2013 Feb;39(2):299-309. doi: 10.3109/03639045.2012.679361. Epub 2012 Apr 23.
6
Microneedles for transdermal drug delivery.
Adv Drug Deliv Rev. 2004 Mar 27;56(5):581-7. doi: 10.1016/j.addr.2003.10.023.
7
Metallic microneedles with interconnected porosity: A scalable platform for biosensing and drug delivery.
Acta Biomater. 2018 Oct 15;80:401-411. doi: 10.1016/j.actbio.2018.09.007. Epub 2018 Sep 8.
8
Optimizing microneedle arrays to increase skin permeability for transdermal drug delivery.
Ann N Y Acad Sci. 2009 Apr;1161:83-94. doi: 10.1111/j.1749-6632.2009.04083.x.
10
Multilayered pyramidal dissolving microneedle patches with flexible pedestals for improving effective drug delivery.
J Control Release. 2017 Nov 10;265:113-119. doi: 10.1016/j.jconrel.2016.08.031. Epub 2016 Aug 26.

引用本文的文献

3
Staggered Design of UV-Curable Polymer Microneedle Arrays with Increased Vertical Action Space.
Polymers (Basel). 2025 Jan 2;17(1):104. doi: 10.3390/polym17010104.
4
Hydrogel-Forming Microneedles and Applications in Interstitial Fluid Diagnostic Devices.
Adv Healthc Mater. 2025 Jan;14(1):e2401782. doi: 10.1002/adhm.202401782. Epub 2024 Nov 19.
5
Revolutionizing Intervertebral Disc Regeneration: Advances and Future Directions in Three-Dimensional Bioprinting of Hydrogel Scaffolds.
Int J Nanomedicine. 2024 Oct 21;19:10661-10684. doi: 10.2147/IJN.S469302. eCollection 2024.
7
Microneedles as a potential platform for improving antibiotic delivery to bacterial infections.
Heliyon. 2024 Aug 29;10(17):e37173. doi: 10.1016/j.heliyon.2024.e37173. eCollection 2024 Sep 15.
8
Vat-based photopolymerization 3D printing: From materials to topical and transdermal applications.
Asian J Pharm Sci. 2024 Aug;19(4):100940. doi: 10.1016/j.ajps.2024.100940. Epub 2024 Jul 3.
9
3D printed microneedles: revamping transdermal drug delivery systems.
Drug Deliv Transl Res. 2025 Feb;15(2):436-454. doi: 10.1007/s13346-024-01679-7. Epub 2024 Aug 5.

本文引用的文献

1
Additive manufacturing. Continuous liquid interface production of 3D objects.
Science. 2015 Mar 20;347(6228):1349-52. doi: 10.1126/science.aaa2397. Epub 2015 Mar 16.
2
Monitoring the penetration process of single microneedles with varying tip diameters.
J Mech Behav Biomed Mater. 2014 Dec;40:397-405. doi: 10.1016/j.jmbbm.2014.09.015. Epub 2014 Oct 8.
3
Characterization of polymeric microneedle arrays for transdermal drug delivery.
PLoS One. 2013 Oct 23;8(10):e77289. doi: 10.1371/journal.pone.0077289. eCollection 2013.
4
Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin.
J Pharm Sci. 2013 Nov;102(11):4100-8. doi: 10.1002/jps.23724. Epub 2013 Sep 11.
5
Rapidly-dissolvable microneedle patches via a highly scalable and reproducible soft lithography approach.
Adv Mater. 2013 Sep 25;25(36):5060-6. doi: 10.1002/adma.201300526. Epub 2013 Jul 29.
6
Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats.
Acta Biomater. 2013 Nov;9(11):8952-61. doi: 10.1016/j.actbio.2013.06.029. Epub 2013 Jun 29.
8
Polymer multilayer tattooing for enhanced DNA vaccination.
Nat Mater. 2013 Apr;12(4):367-76. doi: 10.1038/nmat3550. Epub 2013 Jan 27.
9
Drawing lithography for microneedles: a review of fundamentals and biomedical applications.
Biomaterials. 2012 Oct;33(30):7309-26. doi: 10.1016/j.biomaterials.2012.06.065. Epub 2012 Jul 24.
10
Protein encapsulation in polymeric microneedles by photolithography.
Int J Nanomedicine. 2012;7:3143-54. doi: 10.2147/IJN.S32000. Epub 2012 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验