Gutierrez Yael, Ortiz Dolores, Sanz Juan M, Saiz Jose M, Gonzalez Francisco, Everitt Henry O, Moreno Fernando
Opt Express. 2016 Sep 5;24(18):20621-31. doi: 10.1364/OE.24.020621.
The ultraviolet (UV) range presents new challenges for plasmonics, with interesting applications ranging from engineering to biology. In previous research, gallium, aluminum, and magnesium were found to be very promising UV plasmonic metals. However, a native oxide shell surrounds nanostructures of these metals that affects their plasmonic response. Here, through a nanoparticle-oxide core-shell model, we present a detailed electromagnetic analysis of how oxidation alters the UV-plasmonic response of spherical or hemisphere-on-substrate nanostructures made of those metals by analyzing the spectral evolution of two parameters: the absorption efficiency (far-field analysis) and the enhancement of the local intensity averaged over the nanoparticle surface (near-field analysis).
紫外线(UV)波段给等离激元学带来了新的挑战,同时也有着从工程到生物学等诸多有趣的应用。在先前的研究中,镓、铝和镁被发现是非常有前景的紫外线等离激元金属。然而,这些金属的纳米结构周围存在一层天然氧化壳,这会影响它们的等离激元响应。在此,通过一个纳米颗粒-氧化物核壳模型,我们通过分析两个参数的光谱演化,即吸收效率(远场分析)和纳米颗粒表面平均局部强度的增强(近场分析),对氧化如何改变由这些金属制成的球形或半球形衬底纳米结构的紫外线等离激元响应进行了详细的电磁分析。