Suppr超能文献

用于光热应用的等离子体纳米技术——一项评估

Plasmonic nanotechnology for photothermal applications - an evaluation.

作者信息

Indhu A R, Keerthana L, Dharmalingam Gnanaprakash

机构信息

Plasmonic Nanomaterials Laboratory, PSG Institute of Advanced Studies, Coimbatore-641004, India.

出版信息

Beilstein J Nanotechnol. 2023 Mar 27;14:380-419. doi: 10.3762/bjnano.14.33. eCollection 2023.

Abstract

The application of plasmonic nanoparticles is motivated by the phenomenon of surface plasmon resonance. Owing to the tunability of optothermal properties and enhanced stability, these nanostructures show a wide range of applications in optical sensors, steam generation, water desalination, thermal energy storage, and biomedical applications such as photothermal (PT) therapy. The PT effect, that is, the conversion of absorbed light to heat by these particles, has led to thriving research regarding the utilization of plasmonic nanoparticles for a myriad of applications. The design of conventional nanomaterials for PT conversion has focussed predominantly on the manipulation of photon absorption through bandgap engineering, doping, incorporation, and modification of suitable matrix materials. Plasmonic nanomaterials offer an alternative and attractive approach in this regard, through the flexibility in the excitation of surface plasmons. Specific advantages are the considerable improved bandwidth of the absorption, a higher efficiency of photon absorption, facile tuning, as well as flexibility in the synthesis of plasmonic nanomaterials. This review of plasmonic PT (PPT) research begins with a theoretical discussion on the plasmonic properties of nanoparticles by means of the quasi-static approximation, Mie theory, Gans theory, generic simulations on common plasmonic material morphologies, and the evaluation processes of PT performance. Further, a variety of nanomaterials and material classes that have potential for PPT conversion are elucidated, such as plasmonic metals, bimetals, and metal-metal oxide nanocomposites. A detailed investigation of the essential, but often ignored, concept of thermal, chemical, and aggregation stability of nanoparticles is another part of this review. The challenges that remain, as well as prospective directions and chemistries, regarding nanomaterials for PT conversion are pondered on in the final section of the article, taking into account the specific requirements from different applications.

摘要

表面等离子体共振现象推动了等离子体纳米粒子的应用。由于光热性质的可调节性和稳定性的增强,这些纳米结构在光学传感器、蒸汽产生、水淡化、热能存储以及光热(PT)治疗等生物医学应用中展现出广泛的应用前景。PT效应,即这些粒子将吸收的光转化为热,引发了关于利用等离子体纳米粒子进行众多应用的蓬勃研究。传统用于PT转换的纳米材料设计主要集中在通过带隙工程、掺杂、掺入和改性合适的基质材料来操纵光子吸收。在这方面,等离子体纳米材料通过表面等离子体激发的灵活性提供了一种替代且有吸引力的方法。具体优势包括吸收带宽显著改善、光子吸收效率更高、易于调节以及等离子体纳米材料合成的灵活性。这篇关于等离子体光热(PPT)研究的综述首先通过准静态近似、米氏理论、甘斯理论、对常见等离子体材料形态的一般模拟以及PT性能评估过程,对纳米粒子的等离子体性质进行理论探讨。此外,还阐明了具有PPT转换潜力的各种纳米材料和材料类别,如等离子体金属、双金属和金属 - 金属氧化物纳米复合材料。对纳米粒子热稳定性、化学稳定性和聚集稳定性这一重要但常被忽视的概念进行详细研究是本综述的另一部分。文章最后一部分考虑了不同应用的特定要求,思考了关于用于PT转换的纳米材料仍然存在的挑战以及未来的方向和化学性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d4/10071519/906a805622d9/Beilstein_J_Nanotechnol-14-380-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验