Suppr超能文献

用于二尖瓣组织工程的稳定化胶原和弹性蛋白基支架

Stabilized Collagen and Elastin-Based Scaffolds for Mitral Valve Tissue Engineering.

作者信息

Deborde Christopher, Simionescu Dan Teodor, Wright Cristopher, Liao Jun, Sierad Leslie Neil, Simionescu Agneta

机构信息

1 Department of Bioengineering, Clemson University , Clemson, South Carolina.

2 Department of Cardiothoracic Surgery, Greenville Memorial Hospital , Greenville, South Carolina.

出版信息

Tissue Eng Part A. 2016 Nov;22(21-22):1241-1251. doi: 10.1089/ten.TEA.2016.0032. Epub 2016 Oct 3.

Abstract

There is a significant clinical need for new approaches to treatment of mitral valve disease. The aim of this study was to develop a tissue-engineered mitral valve scaffold possessing appropriate composition and structure to ensure ideal characteristics of mitral valves, such as large orifice, rapid opening and closure, maintenance of mitral annulus-papillary muscle continuity, in vivo biocompatibility and extended durability. An extracellular matrix-based scaffold was generated, based on the native porcine mitral valve as starting material and a technique for porcine cell removal without causing damage to the matrix components. To stabilize these structures and slow down their degradation, acellular scaffolds were treated with penta-galloyl glucose (PGG), a well-characterized polyphenol with high affinity for collagen and elastin. Biaxial mechanical testing presented similar characteristics for the PGG-treated scaffolds compared to fresh tissues. The extracellular matrix components, crucial for maintaining the valve shape and function, were well preserved in leaflets, and in chordae, as shown by their resistance to collagenase and elastin. When extracted with strong detergents, the PGG-treated scaffolds released a reduced amount of soluble matrix peptides, compared to untreated scaffolds; this correlated with diminished activation of fibroblasts seeded on scaffolds treated with PGG. Cell-seeded scaffolds conditioned for 5 weeks in a valve bioreactor showed good cell viability. Finally, rat subdermal implantation studies showed that PGG-treated mitral valve scaffolds were biocompatible, nonimmunogenic, noninflammatory, and noncalcifying. In conclusion, a biocompatible mitral valve scaffold was developed, which preserved the biochemical composition and structural integrity of the valve, essential for its highly dynamic mechanical demands, and its biologic durability.

摘要

二尖瓣疾病的治疗急需新方法。本研究的目的是开发一种组织工程二尖瓣支架,其具有合适的组成和结构,以确保二尖瓣具备理想特性,如大开口、快速开闭、维持二尖瓣环-乳头肌连续性、体内生物相容性和延长的耐久性。基于天然猪二尖瓣作为起始材料,并采用一种在不损伤基质成分的情况下去除猪细胞的技术,生成了一种基于细胞外基质的支架。为了稳定这些结构并减缓其降解,对脱细胞支架用五倍子酰葡萄糖(PGG)进行处理,PGG是一种对胶原蛋白和弹性蛋白具有高亲和力且特性明确的多酚。与新鲜组织相比,双轴力学测试显示PGG处理的支架具有相似的特性。对维持瓣膜形状和功能至关重要的细胞外基质成分在瓣叶和腱索中保存良好,这通过它们对胶原酶和弹性蛋白酶的抗性得以体现。与未处理的支架相比,用强去污剂提取时,PGG处理的支架释放的可溶性基质肽量减少;这与接种在PGG处理支架上的成纤维细胞活化减少相关。在瓣膜生物反应器中培养5周的接种细胞支架显示出良好的细胞活力。最后,大鼠皮下植入研究表明,PGG处理的二尖瓣支架具有生物相容性、无免疫原性、无炎症且无钙化。总之,开发了一种生物相容性二尖瓣支架,其保留了瓣膜的生化组成和结构完整性,这对于其高度动态的力学需求及其生物学耐久性至关重要。

相似文献

1
Stabilized Collagen and Elastin-Based Scaffolds for Mitral Valve Tissue Engineering.
Tissue Eng Part A. 2016 Nov;22(21-22):1241-1251. doi: 10.1089/ten.TEA.2016.0032. Epub 2016 Oct 3.
2
Development and Characterization of a Porcine Mitral Valve Scaffold for Tissue Engineering.
J Cardiovasc Transl Res. 2017 Aug;10(4):374-390. doi: 10.1007/s12265-017-9747-z. Epub 2017 May 1.
3
Polyphenol-stabilized tubular elastin scaffolds for tissue engineered vascular grafts.
Tissue Eng Part A. 2009 Oct;15(10):2837-51. doi: 10.1089/ten.TEA.2008.0394.
4
Stabilized collagen scaffolds for heart valve tissue engineering.
Tissue Eng Part A. 2009 Jun;15(6):1257-68. doi: 10.1089/ten.tea.2008.0263.
5
Mitigation of diabetes-related complications in implanted collagen and elastin scaffolds using matrix-binding polyphenol.
Biomaterials. 2013 Jan;34(3):685-95. doi: 10.1016/j.biomaterials.2012.09.081. Epub 2012 Oct 24.
7
Extracellular matrix production by adipose-derived stem cells: implications for heart valve tissue engineering.
Biomaterials. 2011 Jan;32(1):119-27. doi: 10.1016/j.biomaterials.2010.09.003. Epub 2010 Nov 11.
9
Heart valve tissue-derived hydrogels: Preparation and characterization of mitral valve chordae, aortic valve, and mitral valve gels.
J Biomed Mater Res B Appl Biomater. 2019 Jul;107(5):1732-1740. doi: 10.1002/jbm.b.34266. Epub 2018 Nov 12.
10
Tissue-engineered mitral valve: morphology and biomechanics †.
Interact Cardiovasc Thorac Surg. 2015 Jun;20(6):712-9; discussion 719. doi: 10.1093/icvts/ivv039. Epub 2015 Mar 11.

引用本文的文献

3
Nanomaterials-incorporated hydrogels for 3D bioprinting technology.
Nano Converg. 2023 Nov 15;10(1):52. doi: 10.1186/s40580-023-00402-5.
4
Binding of Pentagalloyl Glucose to Aortic Wall Proteins: Insights from Peptide Mapping and Simulated Docking Studies.
Bioengineering (Basel). 2023 Aug 7;10(8):936. doi: 10.3390/bioengineering10080936.
5
Advances in 3D Bioprinting: Techniques, Applications, and Future Directions for Cardiac Tissue Engineering.
Bioengineering (Basel). 2023 Jul 16;10(7):842. doi: 10.3390/bioengineering10070842.
6
High Glucose Induced Changes in Human VEC Phenotype in a 3D Hydrogel Derived From Cell-Free Native Aortic Root.
Front Cardiovasc Med. 2021 Aug 12;8:714573. doi: 10.3389/fcvm.2021.714573. eCollection 2021.
8
Human Adipose-Derived Hydrogel Characterization Based on ASC Biocompatibility and Differentiation.
Stem Cells Int. 2019 Dec 27;2019:9276398. doi: 10.1155/2019/9276398. eCollection 2019.
9
Pentagalloyl Glucose and Its Functional Role in Vascular Health: Biomechanics and Drug-Delivery Characteristics.
Ann Biomed Eng. 2019 Jan;47(1):39-59. doi: 10.1007/s10439-018-02145-5. Epub 2018 Oct 8.
10
Development and Characterization of a Porcine Mitral Valve Scaffold for Tissue Engineering.
J Cardiovasc Transl Res. 2017 Aug;10(4):374-390. doi: 10.1007/s12265-017-9747-z. Epub 2017 May 1.

本文引用的文献

1
Mitral valve disease--morphology and mechanisms.
Nat Rev Cardiol. 2015 Dec;12(12):689-710. doi: 10.1038/nrcardio.2015.161. Epub 2015 Oct 20.
3
Matrix metalloproteinases in the pathology of natural and bioprosthetic cardiac valves.
Cardiovasc Pathol. 1996 Nov-Dec;5(6):323-32. doi: 10.1016/s1054-8807(96)00043-9.
4
Quantification and simulation of layer-specific mitral valve interstitial cells deformation under physiological loading.
J Theor Biol. 2015 May 21;373:26-39. doi: 10.1016/j.jtbi.2015.03.004. Epub 2015 Mar 16.
5
Tissue-engineered mitral valve: morphology and biomechanics †.
Interact Cardiovasc Thorac Surg. 2015 Jun;20(6):712-9; discussion 719. doi: 10.1093/icvts/ivv039. Epub 2015 Mar 11.
6
TGF-β signalling and reactive oxygen species drive fibrosis and matrix remodelling in myxomatous mitral valves.
Cardiovasc Res. 2013 Jul 1;99(1):175-84. doi: 10.1093/cvr/cvt083. Epub 2013 Apr 3.
7
Mechanics of the mitral valve: a critical review, an in vivo parameter identification, and the effect of prestrain.
Biomech Model Mechanobiol. 2013 Oct;12(5):1053-71. doi: 10.1007/s10237-012-0462-z. Epub 2012 Dec 21.
8
Mitigation of diabetes-related complications in implanted collagen and elastin scaffolds using matrix-binding polyphenol.
Biomaterials. 2013 Jan;34(3):685-95. doi: 10.1016/j.biomaterials.2012.09.081. Epub 2012 Oct 24.
9
Structural analysis of chordae tendineae in degenerative disease of the mitral valve.
Int J Cardiol. 2013 Aug 20;167(4):1603-9. doi: 10.1016/j.ijcard.2012.04.092. Epub 2012 May 6.
10
The mechanobiology of mitral valve function, degeneration, and repair.
J Vet Cardiol. 2012 Mar;14(1):47-58. doi: 10.1016/j.jvc.2012.01.002. Epub 2012 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验