Suppr超能文献

二尖瓣的力学:一项关键综述、一项体内参数识别以及预应力的影响。

Mechanics of the mitral valve: a critical review, an in vivo parameter identification, and the effect of prestrain.

机构信息

Department of Mechanical Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA,

出版信息

Biomech Model Mechanobiol. 2013 Oct;12(5):1053-71. doi: 10.1007/s10237-012-0462-z. Epub 2012 Dec 21.

Abstract

Alterations in mitral valve mechanics are classical indicators of valvular heart disease, such as mitral valve prolapse, mitral regurgitation, and mitral stenosis. Computational modeling is a powerful technique to quantify these alterations, to explore mitral valve physiology and pathology, and to classify the impact of novel treatment strategies. The selection of the appropriate constitutive model and the choice of its material parameters are paramount to the success of these models. However, the in vivo parameters values for these models are unknown. Here, we identify the in vivo material parameters for three common hyperelastic models for mitral valve tissue, an isotropic one and two anisotropic ones, using an inverse finite element approach. We demonstrate that the two anisotropic models provide an excellent fit to the in vivo data, with local displacement errors in the sub-millimeter range. In a complementary sensitivity analysis, we show that the identified parameter values are highly sensitive to prestrain, with some parameters varying up to four orders of magnitude. For the coupled anisotropic model, the stiffness varied from 119,021 kPa at 0 % prestrain via 36 kPa at 30 % prestrain to 9 kPa at 60 % prestrain. These results may, at least in part, explain the discrepancy between previously reported ex vivo and in vivo measurements of mitral leaflet stiffness. We believe that our study provides valuable guidelines for modeling mitral valve mechanics, selecting appropriate constitutive models, and choosing physiologically meaningful parameter values. Future studies will be necessary to experimentally and computationally investigate prestrain, to verify its existence, to quantify its magnitude, and to clarify its role in mitral valve mechanics.

摘要

二尖瓣力学的改变是瓣膜性心脏病的典型指标,如二尖瓣脱垂、二尖瓣反流和二尖瓣狭窄。计算建模是量化这些改变、探索二尖瓣生理和病理以及对新型治疗策略进行分类的有力技术。选择适当的本构模型及其材料参数对于这些模型的成功至关重要。然而,这些模型的体内参数值是未知的。在这里,我们使用逆有限元方法为三种常见的二尖瓣组织超弹性模型(各向同性模型和两种各向异性模型)确定体内材料参数。我们证明,两种各向异性模型与体内数据拟合得非常好,局部位移误差在亚毫米范围内。在补充灵敏度分析中,我们表明,所确定的参数值对预应变高度敏感,有些参数的变化幅度高达四个数量级。对于耦合各向异性模型,在 0%预应变为 119,021kPa,在 30%预应变为 36kPa,在 60%预应变为 9kPa。这些结果至少可以部分解释先前报道的二尖瓣叶刚度的离体和体内测量之间的差异。我们相信,我们的研究为二尖瓣力学建模、选择适当的本构模型以及选择具有生理意义的参数值提供了有价值的指导。未来的研究将有必要在实验和计算上研究预应变,以验证其存在、量化其幅度,并阐明其在二尖瓣力学中的作用。

相似文献

1
Mechanics of the mitral valve: a critical review, an in vivo parameter identification, and the effect of prestrain.
Biomech Model Mechanobiol. 2013 Oct;12(5):1053-71. doi: 10.1007/s10237-012-0462-z. Epub 2012 Dec 21.
3
A computational model to predict cell traction-mediated prestretch in the mitral valve.
Comput Methods Biomech Biomed Engin. 2019 Nov;22(15):1174-1185. doi: 10.1080/10255842.2019.1647533. Epub 2019 Aug 19.
4
On the effect of prestrain and residual stress in thin biological membranes.
J Mech Phys Solids. 2013 Sep 1;61(9):1955-1969. doi: 10.1016/j.jmps.2013.04.005.
7
Replacement of mitral valve posterior chordae tendineae with expanded polytetrafluoroethylene suture: a finite element study.
J Card Surg. 1996 Mar-Apr;11(2):136-45; discussion 146. doi: 10.1111/j.1540-8191.1996.tb00028.x.
9
Wrinkle-induced tear in the mitral valve leaflet tissue: a computational model.
J Med Eng Technol. 2020 Aug;44(6):346-353. doi: 10.1080/03091902.2020.1799091. Epub 2020 Aug 7.
10
Biomechanical drawbacks of different techniques of mitral neochordal implantation: When an apparently optimal repair can fail.
J Thorac Cardiovasc Surg. 2015 Nov;150(5):1303-12.e4. doi: 10.1016/j.jtcvs.2015.07.014. Epub 2015 Jul 11.

引用本文的文献

1
A noninvasive method for determining elastic parameters of valve tissue using physics-informed neural networks.
Acta Biomater. 2025 Jun 15;200:283-298. doi: 10.1016/j.actbio.2025.05.021. Epub 2025 May 26.
3
Guidelines for mechanistic modeling and analysis in cardiovascular research.
Am J Physiol Heart Circ Physiol. 2024 Aug 1;327(2):H473-H503. doi: 10.1152/ajpheart.00766.2023. Epub 2024 Jun 21.
4
On modeling the multiscale mechanobiology of soft tissues: Challenges and progress.
Biophys Rev (Melville). 2022 Aug 15;3(3):031303. doi: 10.1063/5.0085025. eCollection 2022 Sep.
6
The impact of thickness heterogeneity on soft tissue biomechanics: a novel measurement technique and a demonstration on heart valve tissue.
Biomech Model Mechanobiol. 2023 Oct;22(5):1487-1498. doi: 10.1007/s10237-022-01640-y. Epub 2022 Oct 25.
7
Benchtop characterization of the tricuspid valve leaflet pre-strains.
Acta Biomater. 2022 Oct 15;152:321-334. doi: 10.1016/j.actbio.2022.08.046. Epub 2022 Aug 27.
8
Membrane curvature and connective fiber alignment in guinea pig round window membrane.
Acta Biomater. 2021 Dec;136:343-362. doi: 10.1016/j.actbio.2021.09.036. Epub 2021 Sep 24.
9
Parameterization, geometric modeling, and isogeometric analysis of tricuspid valves.
Comput Methods Appl Mech Eng. 2021 Oct 1;384. doi: 10.1016/j.cma.2021.113960. Epub 2021 Jun 17.
10
Radiofrequency ablation alters the microstructural organization of healthy and enzymatically digested porcine mitral valves.
Exp Mech. 2021 Jan;61(1):235-251. doi: 10.1007/s11340-020-00662-w. Epub 2020 Oct 26.

本文引用的文献

1
Cardiac valve interstitial cells: regulator of valve structure and function.
Cardiovasc Pathol. 1997 May-Jun;6(3):167-74. doi: 10.1016/s1054-8807(96)00115-9.
2
On the effect of prestrain and residual stress in thin biological membranes.
J Mech Phys Solids. 2013 Sep 1;61(9):1955-1969. doi: 10.1016/j.jmps.2013.04.005.
3
Evidence of adaptive mitral leaflet growth.
J Mech Behav Biomed Mater. 2012 Nov;15:208-17. doi: 10.1016/j.jmbbm.2012.07.001. Epub 2012 Jul 10.
4
How do annuloplasty rings affect mitral annular strains in the normal beating ovine heart?
Circulation. 2012 Sep 11;126(11 Suppl 1):S231-8. doi: 10.1161/CIRCULATIONAHA.111.084046.
5
A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics.
Ann Biomed Eng. 2013 Feb;41(2):305-15. doi: 10.1007/s10439-012-0651-z. Epub 2012 Sep 11.
6
Smooth muscle in the human mitral valve: extent and implications for dynamic modelling.
APMIS. 2012 Jun;120(6):484-94. doi: 10.1111/j.1600-0463.2011.02860.x. Epub 2012 Jan 23.
7
In-vivo transducer to measure dynamic mitral annular forces.
J Biomech. 2012 May 11;45(8):1514-6. doi: 10.1016/j.jbiomech.2012.03.009. Epub 2012 Apr 5.
8
A three-constituent damage model for arterial clamping in computer-assisted surgery.
Biomech Model Mechanobiol. 2013 Jan;12(1):123-36. doi: 10.1007/s10237-012-0386-7. Epub 2012 Mar 25.
9
On the in vivo deformation of the mitral valve anterior leaflet: effects of annular geometry and referential configuration.
Ann Biomed Eng. 2012 Jul;40(7):1455-67. doi: 10.1007/s10439-012-0524-5. Epub 2012 Feb 11.
10
Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound.
J Biomech. 2012 Mar 15;45(5):903-7. doi: 10.1016/j.jbiomech.2011.11.033. Epub 2012 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验