Department of Mechanical Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA,
Biomech Model Mechanobiol. 2013 Oct;12(5):1053-71. doi: 10.1007/s10237-012-0462-z. Epub 2012 Dec 21.
Alterations in mitral valve mechanics are classical indicators of valvular heart disease, such as mitral valve prolapse, mitral regurgitation, and mitral stenosis. Computational modeling is a powerful technique to quantify these alterations, to explore mitral valve physiology and pathology, and to classify the impact of novel treatment strategies. The selection of the appropriate constitutive model and the choice of its material parameters are paramount to the success of these models. However, the in vivo parameters values for these models are unknown. Here, we identify the in vivo material parameters for three common hyperelastic models for mitral valve tissue, an isotropic one and two anisotropic ones, using an inverse finite element approach. We demonstrate that the two anisotropic models provide an excellent fit to the in vivo data, with local displacement errors in the sub-millimeter range. In a complementary sensitivity analysis, we show that the identified parameter values are highly sensitive to prestrain, with some parameters varying up to four orders of magnitude. For the coupled anisotropic model, the stiffness varied from 119,021 kPa at 0 % prestrain via 36 kPa at 30 % prestrain to 9 kPa at 60 % prestrain. These results may, at least in part, explain the discrepancy between previously reported ex vivo and in vivo measurements of mitral leaflet stiffness. We believe that our study provides valuable guidelines for modeling mitral valve mechanics, selecting appropriate constitutive models, and choosing physiologically meaningful parameter values. Future studies will be necessary to experimentally and computationally investigate prestrain, to verify its existence, to quantify its magnitude, and to clarify its role in mitral valve mechanics.
二尖瓣力学的改变是瓣膜性心脏病的典型指标,如二尖瓣脱垂、二尖瓣反流和二尖瓣狭窄。计算建模是量化这些改变、探索二尖瓣生理和病理以及对新型治疗策略进行分类的有力技术。选择适当的本构模型及其材料参数对于这些模型的成功至关重要。然而,这些模型的体内参数值是未知的。在这里,我们使用逆有限元方法为三种常见的二尖瓣组织超弹性模型(各向同性模型和两种各向异性模型)确定体内材料参数。我们证明,两种各向异性模型与体内数据拟合得非常好,局部位移误差在亚毫米范围内。在补充灵敏度分析中,我们表明,所确定的参数值对预应变高度敏感,有些参数的变化幅度高达四个数量级。对于耦合各向异性模型,在 0%预应变为 119,021kPa,在 30%预应变为 36kPa,在 60%预应变为 9kPa。这些结果至少可以部分解释先前报道的二尖瓣叶刚度的离体和体内测量之间的差异。我们相信,我们的研究为二尖瓣力学建模、选择适当的本构模型以及选择具有生理意义的参数值提供了有价值的指导。未来的研究将有必要在实验和计算上研究预应变,以验证其存在、量化其幅度,并阐明其在二尖瓣力学中的作用。