Suppr超能文献

生理负荷下二尖瓣间质细胞层特异性变形的量化与模拟

Quantification and simulation of layer-specific mitral valve interstitial cells deformation under physiological loading.

作者信息

Lee Chung-Hao, Carruthers Christopher A, Ayoub Salma, Gorman Robert C, Gorman Joseph H, Sacks Michael S

机构信息

Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences (ICES), Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, POB 5.236, 1 University Station C0200, Austin, TX 78712, USA.

Cardiac Rhythm Disease Management (CRDM) Clinical Specialist, Medtronic, Minneapolis, MN 55432, USA.

出版信息

J Theor Biol. 2015 May 21;373:26-39. doi: 10.1016/j.jtbi.2015.03.004. Epub 2015 Mar 16.

Abstract

Within each of the four layers of mitral valve (MV) leaflet tissues there resides a heterogeneous population of interstitial cells that maintain the structural integrity of the MV tissue via protein biosynthesis and enzymatic degradation. There is increasing evidence that tissue stress-induced MV interstitial cell (MVIC) deformations can have deleterious effects on their biosynthetic states that are potentially related to the reduction of tissue-level maintenance and to subsequent organ-level failure. To better understand the interrelationships between tissue-level loading and cellular responses, we developed the following integrated experimental-computational approach. Since in vivo cellular deformations are not directly measurable, we quantified the in-situ layer-specific MVIC deformations for each of the four layers under a controlled biaxial tension loading device coupled to multi-photon microscopy. Next, we explored the interrelationship between the MVIC stiffness and deformation to layer-specific tissue mechanical and structural properties using a macro-micro finite element computational model. Experimental results indicated that the MVICs in the fibrosa and ventricularis layers deformed significantly more than those in the atrialis and spongiosa layers, reaching a nucleus aspect ratio of 3.3 under an estimated maximum physiological tension of 150N/m. The simulated MVIC moduli for the four layers were found to be all within a narrow range of 4.71-5.35kPa, suggesting that MVIC deformation is primarily controlled by each tissue layer's respective structure and mechanical behavior rather than the intrinsic MVIC stiffness. This novel result further suggests that while the MVICs may be phenotypically and biomechanically similar throughout the leaflet, they experience layer-specific mechanical stimulatory inputs due to distinct extracellular matrix architecture and mechanical behaviors of the four MV leaflet tissue layers. This also suggests that MVICs may behave in a layer-specific manner in response to mechanical stimuli in both normal and surgically modified MVs.

摘要

在二尖瓣(MV)瓣叶组织的四层结构中,均存在着异质性的间质细胞群体,这些细胞通过蛋白质生物合成和酶促降解来维持MV组织的结构完整性。越来越多的证据表明,组织应力诱导的MV间质细胞(MVIC)变形会对其生物合成状态产生有害影响,这可能与组织水平维持功能的降低以及随后的器官水平功能衰竭有关。为了更好地理解组织水平负荷与细胞反应之间的相互关系,我们开发了以下综合实验-计算方法。由于体内细胞变形无法直接测量,我们在与多光子显微镜耦合的可控双轴拉伸加载装置下,对四层结构中每层的原位层特异性MVIC变形进行了量化。接下来,我们使用宏观-微观有限元计算模型,探究了MVIC刚度与变形之间的相互关系以及层特异性组织的力学和结构特性。实验结果表明,纤维层和心室层中的MVIC变形明显大于心耳层和海绵层中的MVIC变形,在估计的最大生理张力150N/m下,细胞核长宽比达到3.3。发现四层结构的模拟MVIC模量均在4.71-5.35kPa的狭窄范围内,这表明MVIC变形主要受每个组织层各自的结构和力学行为控制,而非MVIC的固有刚度。这一新颖的结果进一步表明,虽然MVIC在整个瓣叶中可能在表型和生物力学上相似,但由于四个MV瓣叶组织层不同的细胞外基质结构和力学行为,它们会经历层特异性的机械刺激输入。这也表明,在正常和手术改变的MV中,MVIC可能会以层特异性方式对机械刺激做出反应。

相似文献

7
Interlayer micromechanics of the aortic heart valve leaflet.主动脉心脏瓣膜小叶的层间微观力学
Biomech Model Mechanobiol. 2014 Aug;13(4):813-26. doi: 10.1007/s10237-013-0536-6. Epub 2013 Nov 30.

引用本文的文献

4
Manufacturing of a Transdermal Patch in 3D Printing.3D打印技术制备透皮贴剂
Micromachines (Basel). 2022 Dec 10;13(12):2190. doi: 10.3390/mi13122190.
7
Subject-specific multiscale modeling of aortic valve biomechanics.主动脉瓣生物力学的基于体的多尺度建模。
Biomech Model Mechanobiol. 2021 Jun;20(3):1031-1046. doi: 10.1007/s10237-021-01429-5. Epub 2021 Apr 1.

本文引用的文献

3
Interlayer micromechanics of the aortic heart valve leaflet.主动脉心脏瓣膜小叶的层间微观力学
Biomech Model Mechanobiol. 2014 Aug;13(4):813-26. doi: 10.1007/s10237-013-0536-6. Epub 2013 Nov 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验