Kwakye Gunnar F, McMinimy Rachael A, Aschner Michael
Department of Neuroscience, Oberlin College, 119 Woodland St., Room K232, Oberlin, OH, 44074, USA.
Departments of Molecular Pharmacology and Pediatrics, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, USA.
Neurochem Res. 2017 Jun;42(6):1772-1786. doi: 10.1007/s11064-016-2052-4. Epub 2016 Sep 9.
Human disease commonly manifests as a result of complex genetic and environmental interactions. In the case of neurodegenerative diseases, such as Parkinson's disease (PD), understanding how environmental exposures collude with genetic polymorphisms in the central nervous system to cause dysfunction is critical in order to develop better treatment strategies, therapies, and a more cohesive paradigm for future research. The intersection of genetics and the environment in disease etiology is particularly relevant in the context of their shared pathophysiological mechanisms. This review offers an integrated view of disease-toxicant interactions in PD. Particular attention is dedicated to how mutations in the genes SNCA, parkin, leucine-rich repeat kinase 2 (LRRK2) and DJ-1, as well as dysfunction of the ubiquitin proteasome system, may contribute to PD and how exposure to heavy metals, pesticides and illicit drugs may further the consequences of these mutations to exacerbate PD and PD-like disorders. Although the toxic effects induced by exposure to these environmental factors may not be the primary causes of PD, their mechanisms of action are critical for our current understanding of the neuropathologies driving PD. Elucidating how environment and genetics collude to cause pathogenesis of PD will facilitate the development of more effective treatments for the disease. Additionally, we discuss the neuroprotection exerted by estrogen and other compounds that may prevent PD and provide an overview of current treatment strategies and therapies.
人类疾病通常是复杂的基因与环境相互作用的结果。就神经退行性疾病而言,如帕金森病(PD),了解环境暴露如何与中枢神经系统中的基因多态性相互作用导致功能障碍,对于制定更好的治疗策略、疗法以及更具连贯性的未来研究范式至关重要。在疾病病因学中,基因与环境的交叉点在其共享的病理生理机制背景下尤为重要。本综述提供了帕金森病中疾病与毒物相互作用的综合观点。特别关注了基因SNCA、帕金、富含亮氨酸重复激酶2(LRRK2)和DJ-1的突变,以及泛素蛋白酶体系统功能障碍如何可能导致帕金森病,以及接触重金属(论)、农药和非法药物如何可能加剧这些突变的后果,从而加重帕金森病和帕金森病样疾病。虽然接触这些环境因素所诱导的毒性作用可能不是帕金森病的主要病因,但其作用机制对于我们目前对驱动帕金森病的神经病理学的理解至关重要。阐明环境与基因如何相互作用导致帕金森病的发病机制将有助于开发更有效的该疾病治疗方法。此外,我们讨论了雌激素和其他可能预防帕金森病的化合物所发挥的神经保护作用,并概述了当前的治疗策略和疗法。 (注:原文中“heavy metals, pesticides and illicit drugs may further the consequences of these mutations to exacerbate PD and PD-like disorders”中“论”为多余,已按正确理解翻译)