Sterpin E, Barragan A, Souris K, Lee J A
Katholieke Universiteit Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, O&N I Herestraat 49, 3000 Leuven, Belgique; Université catholique de Louvain, Center of Molecular Imaging, Radiotherapy and Oncology, institut de recherche expérimentale et clinique, avenue Hippocrate 54, 1200 Brussels, Belgique.
Université catholique de Louvain, Center of Molecular Imaging, Radiotherapy and Oncology, institut de recherche expérimentale et clinique, avenue Hippocrate 54, 1200 Brussels, Belgique.
Cancer Radiother. 2016 Oct;20(6-7):523-9. doi: 10.1016/j.canrad.2016.07.075. Epub 2016 Sep 8.
The concentration of the dose delivered by protons at the end of their path, the Bragg peak, has the potential to improve external radiotherapy treatments. Unfortunately, the main strength of the protons, their finite range, is also their greatest weakness. Any uncertainty on the range may lead to inadequate target coverage or excessive toxicity. The uncertainties have multiple origins and include, among others, ballistic errors, morphological modifications or inaccurate estimations of the physical quantities necessary to predict the proton range. Uncertainties have been part of daily practice in conventional radiotherapy with X-rays for a long time. However, dose distributions delivered with X-rays are much less sensitive to uncertainties than the ones delivered with protons. This relative insensitivity enabled the management of uncertainties through safety margins using a simple formalism. The conditions of validity of this formalism are much more restrictive for proton therapy, leading to the need of developing new tools and adapted strategies to manage accurately these uncertainties. The objective of this paper is to present a vision for the management of uncertainties in proton therapy in the continuity of formalisms established for X-rays. The latter are first summarized before discussing the necessary developments in order to consistently apply them to protons.
质子在其路径末端所传递剂量的浓度,即布拉格峰,有可能改善外照射放疗治疗效果。不幸的是,质子的主要优势,即其有限射程,同时也是其最大的弱点。射程的任何不确定性都可能导致靶区覆盖不足或毒性过大。这些不确定性有多种来源,其中包括弹道误差、形态改变或对预测质子射程所需物理量的不准确估计。不确定性长期以来一直是传统X射线放疗日常实践的一部分。然而,与质子传递的剂量分布相比,X射线传递的剂量分布对不确定性的敏感度要低得多。这种相对不敏感性使得通过使用简单形式主义的安全裕度来管理不确定性成为可能。这种形式主义的有效性条件对质子治疗的限制要严格得多,这就导致需要开发新的工具和适用策略来准确管理这些不确定性。本文的目的是在为X射线建立的形式主义的延续中,提出一种质子治疗不确定性管理的设想。在讨论为将其一致应用于质子而进行的必要发展之前,首先对后者进行总结。