Otani Naoyuki, Ouchi Motoshi, Hayashi Keitaro, Jutabha Promsuk, Anzai Naohiko
Department of Pharmacology and Toxicology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi, 321-0293, Japan.
Department of Pharmacology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
Anat Sci Int. 2017 Mar;92(2):200-206. doi: 10.1007/s12565-016-0369-3. Epub 2016 Sep 10.
Organic anions (OAs) are secreted in renal proximal tubules in two steps. In the first step, OAs are transported from the blood through basolateral membranes into proximal tubular cells. The prototypical substrate for renal organic anion transport systems, para-aminohippurate (PAH), is transported across basolateral membranes of proximal tubular cells via OAT1 (SLC22A6) and OAT3 (SLC22A8) against an electrochemical gradient in exchange for intracellular dicarboxylates. In the second step, OAs exit into urine through apical membranes of proximal tubules. This step is thought to be performed by multidrug efflux transporters and a voltage-driven organic anion transporter. However, the molecular nature and precise functional properties of these efflux systems are largely unknown. Recently, we characterized an orphan transporter known as human type I sodium-phosphate transporter 4, hNPT4 (SLC17A3), using the Xenopus oocyte expression system. hNPT4 acts as a voltage-driven efflux transporter ("human OATv1") for several OAs such as PAH, estrone sulfate, diuretic drugs, and urate. Here, we describe a model for an OA secretory pathway in renal tubular cells in which OAs exit cells and enter the tubular lumen via hOATv1 (hNPT4). Additionally, hOATv1 functions as a common renal secretory pathway for both urate and drugs, indicating that hOATv1 may be a leak pathway for excess urate that is reabsorbed via apical URAT1 to control the intracellular urate levels. Therefore, we propose a molecular mechanism for the induction of hyperuricemia by diuretics: the diuretics enter proximal tubular cells via basolateral OAT1 and/or OAT3 and may then interfere with the NPT4-mediated apical urate efflux in the renal proximal tubule.
有机阴离子(OAs)在肾近端小管中的分泌分两步进行。第一步,OAs从血液通过基底外侧膜转运到近端小管细胞内。肾有机阴离子转运系统的典型底物对氨基马尿酸(PAH),通过OAT1(SLC22A6)和OAT3(SLC22A8)逆电化学梯度转运穿过近端小管细胞的基底外侧膜,以交换细胞内的二羧酸盐。第二步,OAs通过近端小管的顶端膜排入尿液。这一步被认为是由多药外排转运体和电压驱动的有机阴离子转运体完成的。然而,这些外排系统的分子特性和精确功能特性在很大程度上尚不清楚。最近,我们利用非洲爪蟾卵母细胞表达系统对一种名为人类I型钠-磷酸盐转运体4(hNPT4,SLC17A3)的孤儿转运体进行了表征。hNPT4作为几种OAs(如PAH、硫酸雌酮、利尿药和尿酸盐)的电压驱动外排转运体(“人类OATv1”)。在这里,我们描述了一种肾小管细胞中OA分泌途径的模型,其中OAs通过hOATv1(hNPT4)排出细胞并进入肾小管腔。此外,hOATv1作为尿酸盐和药物的共同肾分泌途径,表明hOATv1可能是多余尿酸盐的泄漏途径,这些尿酸盐通过顶端URAT1重吸收以控制细胞内尿酸盐水平。因此,我们提出了利尿剂诱导高尿酸血症的分子机制:利尿剂通过基底外侧的OAT1和/或OAT3进入近端小管细胞,然后可能干扰肾近端小管中NPT4介导的顶端尿酸盐外排。