National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, P. O. Box 919-111, Mianyang, Sichuan 621900, People's Republic of China.
Sci Rep. 2016 Sep 12;6:33092. doi: 10.1038/srep33092.
Much greater surface-to-volume ratio of hierarchical nanostructures renders them attract considerable interest as prototypical gas sensors. In this work, a novel resistive gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures is fabricated by a facile one-step synthetic process and the ethanol sensing performance of this device is characterized systematically, which shows faster response/recovery behavior, better selectivity, and higher sensitivity of about 9 times as compared to the pure TiO2 nanofibers. The enhanced sensitivity of the TiO2/Ag0.35V2O5 branched nanoheterostructures should be attributed to the extraordinary branched hierarchical structures and TiO2/Ag0.35V2O5 heterojunctions, which can eventually result in an obvious change of resistance upon ethanol exposure. This study not only indicates the gas sensing mechanism for performance enhancement of branched nanoheterostructures, but also proposes a rational approach to design nanostructure based chemical sensors with desirable performance.
分层纳米结构具有更大的比表面积,因此作为典型的气体传感器引起了相当大的关注。在这项工作中,通过简便的一步合成工艺制备了一种基于 TiO2/Ag0.35V2O5 支化纳米异质结构的新型电阻式气体传感器,并系统地表征了该器件的乙醇传感性能,与纯 TiO2 纳米纤维相比,该器件具有更快的响应/恢复行为、更好的选择性和约 9 倍的灵敏度。TiO2/Ag0.35V2O5 支化纳米异质结构的增强灵敏度归因于特殊的支化分层结构和 TiO2/Ag0.35V2O5 异质结,这最终导致在乙醇暴露时电阻明显变化。这项研究不仅表明了气体传感机制对于增强支化纳米异质结构性能的作用,而且还提出了一种合理的方法来设计具有理想性能的基于纳米结构的化学传感器。