National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, PO Box 919-111, Mianyang, Sichuan 621900, People's Republic of China.
Nanotechnology. 2016 Oct 21;27(42):425503. doi: 10.1088/0957-4484/27/42/425503. Epub 2016 Sep 19.
Hierarchical nanostructures with much increased surface-to-volume ratio have been of significant interest for prototypical gas sensors. Herein we report a novel resistive gas sensor based on TiO2/V2O5 branched nanoheterostructures fabricated by a facile one-step synthetic process, in which well-matched energy levels induced by the formation of effective heterojunctions between TiO2 and V2O5, a large Brunauer-Emmett-Teller surface area and complete electron depletion for the V2O5 nanobranches induced by the branched-nanofiber structures are all beneficial to the change of resistance upon ethanol exposure. As a result, the ethanol sensing performance of this device shows a lower operating temperature, faster response/recovery behavior, better selectivity and about seven times higher sensitivity compared with pure TiO2 nanofibers. This study not only confirms the gas sensing mechanism for performing enhancement of branched nanoheterostructures, but also proposes a rational approach to the design of nanostructure-based chemical sensors with desirable performance.
具有大大增加的比表面积的分层纳米结构一直是原型气体传感器的重要关注点。在此,我们报告了一种基于 TiO2/V2O5 支化纳米异质结构的新型电阻式气体传感器,该传感器通过简便的一步合成工艺制备,其中 TiO2 和 V2O5 之间形成有效的异质结所引起的能级匹配、大的 Brunauer-Emmett-Teller 表面积以及 V2O5 纳米支链引起的完全电子耗尽都有利于电阻在乙醇暴露下的变化。结果,与纯 TiO2 纳米纤维相比,该器件的乙醇传感性能表现出更低的工作温度、更快的响应/恢复行为、更好的选择性以及约高 7 倍的灵敏度。这项研究不仅证实了用于增强支化纳米异质结构的气体传感机制,而且还提出了一种合理的方法来设计具有理想性能的基于纳米结构的化学传感器。