Sega G A, Alcota R P, Tancongco C P, Brimer P A
Biology Division, Oak Ridge National Laboratory, TN 37831-8077.
Mutat Res. 1989 Aug;216(4):221-30. doi: 10.1016/0165-1161(89)90008-3.
Mice received an intraperitoneal injection of 14C-labeled acrylamide (AA) at an exposure of 125 mg/kg to equal that used in genetic studies carried out by Shelby et al. (1986). Subsequently, spermatozoa were recovered from the reproductive tracts of the animals over a 3-week period and assayed for the amount of bound AA. A strong increase in the level of binding occurred in late-spermatid to early-spermatozoa stages; these same stages are also genetically most sensitive to the action of AA. At all time points, alkylation of DNA within the sperm accounted for a very small fraction (generally less than 0.5%) of the total sperm-head alkylation. However, alkylation of protamine, a protein unique to sperm cells, was found to be correlated with total sperm-head alkylation and accounted for essentially all of the AA binding. Two radioactive adducts were found in hydrolysed protamine samples, one of which co-eluted with a standard of S-carboxyethylcysteine. Protamine alkylation appears to be a significant cause of acrylamide-induced genetic damage in spermiogenic cells of the mouse.