Targeted Therapeutics, Department of Biomaterials Science and Technology, MIRA Institute, University of Twente, Enschede, The Netherlands.
Applied Microfluidics for BioEngineering Research, MIRA Institute, University of Twente, Enschede, The Netherlands.
J Control Release. 2016 Dec 28;244(Pt B):257-268. doi: 10.1016/j.jconrel.2016.09.004. Epub 2016 Sep 9.
Nanoparticle penetration through tumor tissue after extravasation is considered as a key issue for tumor distribution and therapeutic effects. Most tumors possess abundant stroma, a fibrotic tissue composed of cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM), which acts as a barrier for nanoparticle penetration. There is however a lack of suitable in vitro systems to study the tumor stroma penetration of nanoparticles. In the present study, we developed and thoroughly characterized a 3D co-culture spheroidal array to mimic tumor stroma and investigated the penetration of silica and PLGA nanoparticles in these spheroids. First, we examined human breast tumor patient biopsies to characterize the content and organization of stroma and found a high expression of alpha-smooth muscle actin (α-SMA; 40% positive area) and collagen-1 (50% positive area). Next, we prepared homospheroids of 4T1 mouse breast cancer cells or 3T3 mouse fibroblasts alone as well as heterospheroids combining 3T3 and 4T1 cells in different ratios (1:1 and 5:1) using a microwell array platform. Confocal live imaging revealed that fibroblasts distributed and reorganized within 48h in heterospheroids. Furthermore, immunohistochemical staining and gene expression analysis showed a proportional increase of α-SMA and collagen in heterospheroids with higher fibroblast ratios attaining 35% and 45% positive area at 5:1 (3T3:4T1) ratio, in a good match with the clinical breast tumor stroma. Subsequently, we studied the penetration of high and low negatively charged fluorescent silica nanoparticles (30nm; red and 100 or 70nm; green; zeta potential: -40mV and -20mV) and as well as Cy5-conjugated pegylated PLGA nanoparticles (200nm, -7mV) in both homo- and heterospheroid models. Fluorescent microscopy on spheroid cryosections after incubation with silica nanoparticles showed that 4T1 homospheroids allowed a high penetration of about 75-80% within 24h, with higher penetration in case of the 30nm nanoparticles. In contrast, spheroids with increasing fibroblast amounts significantly inhibited NP penetration. Silica nanoparticles with a less negative zeta potential exhibited lesser penetration compared to highly negative charged nanoparticles. Subsequently, similar experiments were conducted using Cy5-conjugated pegylated PLGA nanoparticles and confocal laser scanning microscopy; an increased nanoparticle penetration was found in 4T1 homospheroids until 48h, but significantly lower penetration in heterospheroids. Furthermore, we also developed human homospheroids (MDA-MB-231 or Panc-1 tumor cells) and heterospheroids (MDA-MB-231/BJ-hTert and Panc-1/pancreatic stellate cells) and performed silica nanoparticle (30 and 100nm) penetration studies. As a result, heterospheroids had significantly a lesser penetration of the nanoparticles compared to homospheroids. In conclusion, our data demonstrate that tumor stroma acts as a strong barrier for nanoparticle penetration. The 30-nm nanoparticles with low zeta potential favor deeper penetration. Furthermore, the herein proposed 3D co-culture platform that mimics the tumor stroma, is ideally suited to systematically investigate the factors influencing the penetration characteristics of newly developed nanomedicines to allow the design of nanoparticles with optimal penetration characteristics.
纳米粒子在渗出后穿透肿瘤组织被认为是肿瘤分布和治疗效果的关键问题。大多数肿瘤都有丰富的基质,即由癌相关成纤维细胞(CAFs)和细胞外基质(ECM)组成的纤维组织,它是纳米粒子穿透的屏障。然而,目前缺乏合适的体外系统来研究纳米粒子对肿瘤基质的穿透。在本研究中,我们开发并彻底表征了一种 3D 共培养的球形阵列,以模拟肿瘤基质,并研究了二氧化硅和 PLGA 纳米粒子在这些球体中的穿透情况。首先,我们检查了人类乳腺癌患者活检,以表征基质的含量和组织,并发现α-平滑肌肌动蛋白(α-SMA;阳性区域 40%)和胶原蛋白-1(50%阳性区域)的高表达。接下来,我们使用微井阵列平台制备了单独的 4T1 小鼠乳腺癌细胞或 3T3 小鼠成纤维细胞的同质球体,以及将 3T3 和 4T1 细胞以不同比例(1:1 和 5:1)组合的异质球体。共聚焦活细胞成像显示,成纤维细胞在异质球体中分布并在 48 小时内重新组织。此外,免疫组织化学染色和基因表达分析显示,异质球体中 α-SMA 和胶原蛋白的比例随着成纤维细胞比例的增加而增加,在 5:1(3T3:4T1)比例下达到 35%和 45%的阳性区域,与临床乳腺癌基质非常匹配。随后,我们研究了高电荷和低电荷负荧光二氧化硅纳米粒子(30nm;红色和 100 或 70nm;绿色;Zeta 电位:-40mV 和-20mV)以及 Cy5 标记的聚乙二醇化 PLGA 纳米粒子(200nm,-7mV)在同质和异质球体模型中的穿透情况。在与二氧化硅纳米粒子孵育后对球体冷冻切片进行荧光显微镜检查显示,4T1 同质球体在 24 小时内允许约 75-80%的高穿透率,30nm 纳米粒子的穿透率更高。相比之下,随着成纤维细胞数量的增加,球体显著抑制了 NP 的穿透。具有较低 Zeta 电位的纳米粒子表现出比高电荷纳米粒子更小的穿透性。随后,使用 Cy5 标记的聚乙二醇化 PLGA 纳米粒子进行了类似的实验,并进行了共聚焦激光扫描显微镜检查;发现 4T1 同质球体中的纳米粒子穿透性在 48 小时内增加,但异质球体中的穿透性明显降低。此外,我们还开发了人源同质球体(MDA-MB-231 或 Panc-1 肿瘤细胞)和异质球体(MDA-MB-231/BJ-hTert 和 Panc-1/胰腺星状细胞),并进行了二氧化硅纳米粒子(30 和 100nm)穿透研究。结果表明,与同质球体相比,异质球体的纳米粒子穿透性明显较低。总之,我们的数据表明,肿瘤基质是纳米粒子穿透的强大屏障。具有低 Zeta 电位的 30nm 纳米粒子有利于更深的穿透。此外,本文提出的模拟肿瘤基质的 3D 共培养平台非常适合系统地研究影响新型纳米药物穿透特性的因素,从而设计具有最佳穿透特性的纳米粒子。