Suppr超能文献

使用格子气自动机和格子玻尔兹曼方法模拟多功能纳米载体在肿瘤组织中的扩散特性

Simulation of the Diffusion Characteristics of Multifunctional Nanocarriers in Tumor Tissues Using Lattice Gas Automata and the Lattice Boltzmann Method.

作者信息

Qin Yuming, Yue Kai, Yu Xiaoling, You Yu, Yang Chao, Zhang Xinxin

机构信息

School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China.

出版信息

Bioengineering (Basel). 2025 Apr 18;12(4):429. doi: 10.3390/bioengineering12040429.

Abstract

Understanding the diffusion mechanisms of nanocarriers in tumor tissues is crucial for enhancing drug delivery to target areas. This study developed a simulation method combining lattice gas automata and the lattice Boltzmann method to explore the diffusion behaviors of ligand-coated nanoparticles (NPs) in the extracellular matrix (ECM) and tumor tissues under the influence of external fields. We propose mathematical models to describe how the movement of NPs is affected by thermomagnetic effects and by their interactions with ECM fiber walls and cells, and to calculate the flow field and temperature distribution in tumor tissues containing interstitial fluids. The results show that reduced tissue porosity and increased ECM fiber and cell densities hinder NP transport. Conversely, degrading ECM collagen fibers with thermal or other energy forms significantly improved NP diffusion in treated tissues. Modifying the surface zeta potential of NPs allowed for the regulation of NP adhesion to ECM fibers and cell membranes based on their charged components. However, altering the charge on the NP surface did not further enhance diffusion once a certain charge level was reached. Increased temperatures from NP heat generation under external fields improved interstitial fluid flow, thereby enhancing NP diffusion. Additionally, a static magnetic field gradient considerably increased the penetration depth of magnetic NPs in the direction of the field, with minimal effects on diffusion in other directions and, in some cases, reducing diffusion.

摘要

了解纳米载体在肿瘤组织中的扩散机制对于增强药物向靶区的递送至关重要。本研究开发了一种结合格子气自动机和格子玻尔兹曼方法的模拟方法,以探索在外部场影响下,配体包被的纳米颗粒(NPs)在细胞外基质(ECM)和肿瘤组织中的扩散行为。我们提出了数学模型,以描述纳米颗粒的运动如何受到热磁效应以及它们与ECM纤维壁和细胞相互作用的影响,并计算含有间质液的肿瘤组织中的流场和温度分布。结果表明,组织孔隙率降低以及ECM纤维和细胞密度增加会阻碍纳米颗粒的运输。相反,用热或其他能量形式降解ECM胶原纤维可显著改善纳米颗粒在处理组织中的扩散。基于纳米颗粒的带电成分,改变其表面zeta电位可调节纳米颗粒与ECM纤维和细胞膜的粘附。然而,一旦达到一定的电荷水平,改变纳米颗粒表面的电荷并不会进一步增强扩散。外部场作用下纳米颗粒产热导致的温度升高改善了间质液流动,从而增强了纳米颗粒的扩散。此外,静磁场梯度显著增加了磁性纳米颗粒在场方向上的穿透深度,对其他方向的扩散影响最小,在某些情况下还会减少扩散。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d63/12024990/44d8f37adfeb/bioengineering-12-00429-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验