Suppr超能文献

利用花粉计数的时空相关特性对、、和花粉浓度水平进行预测的模型 。 (你提供的原文中“、、和”部分内容缺失,请补充完整以便准确翻译)

Forecasting model of , , and pollen concentration levels using spatiotemporal correlation properties of pollen count.

作者信息

Nowosad Jakub, Stach Alfred, Kasprzyk Idalia, Weryszko-Chmielewska Elżbieta, Piotrowska-Weryszko Krystyna, Puc Małgorzata, Grewling Łukasz, Pędziszewska Anna, Uruska Agnieszka, Myszkowska Dorota, Chłopek Kazimiera, Majkowska-Wojciechowska Barbara

机构信息

Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań, Poland.

Department of Environmental Biology, University of Rzeszów, Zelwerowicza 4, 35-601 Rzeszów, Poland.

出版信息

Aerobiologia (Bologna). 2016;32(3):453-468. doi: 10.1007/s10453-015-9418-y. Epub 2015 Dec 14.

Abstract

The aim of the study was to create and evaluate models for predicting high levels of daily pollen concentration of , , and using a spatiotemporal correlation of pollen count. For each taxon, a high pollen count level was established according to the first allergy symptoms during exposure. The dataset was divided into a training set and a test set, using a stratified random split. For each taxon and city, the model was built using a random forest method. models performed poorly. However, the study revealed the possibility of predicting with substantial accuracy the occurrence of days with high pollen concentrations of and using past pollen count data from monitoring sites. These results can be used for building (1) simpler models, which require data only from aerobiological monitoring sites, and (2) combined meteorological and aerobiological models for predicting high levels of pollen concentration.

摘要

该研究的目的是利用花粉计数的时空相关性创建并评估用于预测、和每日花粉浓度高水平的模型。对于每个分类单元,根据暴露期间的首次过敏症状确定高花粉计数水平。使用分层随机分割将数据集分为训练集和测试集。对于每个分类单元和城市,使用随机森林方法构建模型。模型表现不佳。然而,该研究揭示了利用监测站点过去的花粉计数数据以相当高的准确度预测和花粉浓度高水平天数出现情况的可能性。这些结果可用于构建(1)更简单的模型,其仅需要气传生物学监测站点的数据,以及(2)用于预测高花粉浓度水平的气象和气传生物学组合模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4866/4996891/a144b417b0fd/10453_2015_9418_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验