Suppr超能文献

基于广义多模型概率假设密度(GM-PHD)滤波的改进型仅方位多目标跟踪

Improved Bearings-Only Multi-Target Tracking with GM-PHD Filtering.

作者信息

Zhang Qian, Song Taek Lyul

机构信息

Department of Electronic Systems Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.

出版信息

Sensors (Basel). 2016 Sep 10;16(9):1469. doi: 10.3390/s16091469.

Abstract

In this paper, an improved nonlinear Gaussian mixture probability hypothesis density (GM-PHD) filter is proposed to address bearings-only measurements in multi-target tracking. The proposed method, called the Gaussian mixture measurements-probability hypothesis density (GMM-PHD) filter, not only approximates the posterior intensity using a Gaussian mixture, but also models the likelihood function with a Gaussian mixture instead of a single Gaussian distribution. Besides, the target birth model of the GMM-PHD filter is assumed to be partially uniform instead of a Gaussian mixture. Simulation results show that the proposed filter outperforms the GM-PHD filter embedded with the extended Kalman filter (EKF) and the unscented Kalman filter (UKF).

摘要

本文提出了一种改进的非线性高斯混合概率假设密度(GM-PHD)滤波器,以解决多目标跟踪中仅测方位的测量问题。所提出的方法称为高斯混合测量-概率假设密度(GMM-PHD)滤波器,它不仅使用高斯混合来近似后验强度,还使用高斯混合而不是单个高斯分布来对似然函数进行建模。此外,GMM-PHD滤波器的目标出生模型假设为部分均匀分布,而不是高斯混合。仿真结果表明,所提出的滤波器优于嵌入扩展卡尔曼滤波器(EKF)和无迹卡尔曼滤波器(UKF)的GM-PHD滤波器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/289b/5038747/90d6f02d6f2b/sensors-16-01469-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验