Zhang Qian, Song Taek Lyul
Department of Electronic Systems Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
Sensors (Basel). 2016 Sep 10;16(9):1469. doi: 10.3390/s16091469.
In this paper, an improved nonlinear Gaussian mixture probability hypothesis density (GM-PHD) filter is proposed to address bearings-only measurements in multi-target tracking. The proposed method, called the Gaussian mixture measurements-probability hypothesis density (GMM-PHD) filter, not only approximates the posterior intensity using a Gaussian mixture, but also models the likelihood function with a Gaussian mixture instead of a single Gaussian distribution. Besides, the target birth model of the GMM-PHD filter is assumed to be partially uniform instead of a Gaussian mixture. Simulation results show that the proposed filter outperforms the GM-PHD filter embedded with the extended Kalman filter (EKF) and the unscented Kalman filter (UKF).
本文提出了一种改进的非线性高斯混合概率假设密度(GM-PHD)滤波器,以解决多目标跟踪中仅测方位的测量问题。所提出的方法称为高斯混合测量-概率假设密度(GMM-PHD)滤波器,它不仅使用高斯混合来近似后验强度,还使用高斯混合而不是单个高斯分布来对似然函数进行建模。此外,GMM-PHD滤波器的目标出生模型假设为部分均匀分布,而不是高斯混合。仿真结果表明,所提出的滤波器优于嵌入扩展卡尔曼滤波器(EKF)和无迹卡尔曼滤波器(UKF)的GM-PHD滤波器。