Suppr超能文献

用于含异常值多目标跟踪的学生t混合概率假设密度滤波器

A Student's t Mixture Probability Hypothesis Density Filter for Multi-Target Tracking with Outliers.

作者信息

Liu Zhuowei, Chen Shuxin, Wu Hao, He Renke, Hao Lin

机构信息

Information and Navigation College Air Force Engineering University, Xi'an 710077, China.

Unit 93786, Chinese People's Liberation Army (PLA), Zhangjiakou 075000, China.

出版信息

Sensors (Basel). 2018 Apr 4;18(4):1095. doi: 10.3390/s18041095.

Abstract

In multi-target tracking, the outliers-corrupted process and measurement noises can reduce the performance of the probability hypothesis density (PHD) filter severely. To solve the problem, this paper proposed a novel PHD filter, called Student's t mixture PHD (STM-PHD) filter. The proposed filter models the heavy-tailed process noise and measurement noise as a Student's t distribution as well as approximates the multi-target intensity as a mixture of Student's t components to be propagated in time. Then, a closed PHD recursion is obtained based on Student's t approximation. Our approach can make full use of the heavy-tailed characteristic of a Student's t distribution to handle the situations with heavy-tailed process and the measurement noises. The simulation results verify that the proposed filter can overcome the negative effect generated by outliers and maintain a good tracking accuracy in the simultaneous presence of process and measurement outliers.

摘要

在多目标跟踪中,离群值干扰过程和测量噪声会严重降低概率假设密度(PHD)滤波器的性能。为解决该问题,本文提出了一种新型的PHD滤波器,称为学生t混合PHD(STM-PHD)滤波器。所提出的滤波器将重尾过程噪声和测量噪声建模为学生t分布,并将近似多目标强度作为学生t分量的混合以进行时间传播。然后,基于学生t近似获得一个封闭的PHD递推。我们的方法可以充分利用学生t分布的重尾特性来处理具有重尾过程和测量噪声的情况。仿真结果验证了所提出的滤波器能够克服离群值产生的负面影响,并在过程和测量离群值同时存在的情况下保持良好的跟踪精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a35/5948621/750c82859e91/sensors-18-01095-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验