Chiu Hui-Chu, Chiu Deng-Yiv, Lee Yao-Hsien, Wang Chih-Cheng, Wang Chen-Shu, Lee Chi-Chung, Ying Ming-Hsiung, Wu Mei-Yu, Chang Wen-Chih
Deng-Yiv Chiu, Professor, Department of Information Management, Chung-Hua University, Hsinchu, Taiwan ROC, E-mail:
Methods Inf Med. 2016 Oct 17;55(5):450-454. doi: 10.3414/ME15-01-0137. Epub 2016 Sep 14.
To find discriminative combination of influential factors of Intracerebral hematoma (ICH) to cluster ICH patients with similar features to explore relationship among influential factors and 30-day mortality of ICH.
The data of ICH patients are collected. We use a decision tree to find discriminative combination of the influential factors. We cluster ICH patients with similar features using Fuzzy C-means algorithm (FCM) to construct a support vector machine (SVM) for each cluster to build a multi-SVM classifier. Finally, we designate each testing data into its appropriate cluster and apply the corresponding SVM classifier of the cluster to explore the relationship among impact factors and 30-day mortality.
The two influential factors chosen to split the decision tree are Glasgow coma scale (GCS) score and Hematoma size. FCM algorithm finds three centroids, one for high danger group, one for middle danger group, and the other for low danger group. The proposed approach outperforms benchmark experiments without FCM algorithm to cluster training data.
It is appropriate to construct a classifier for each cluster with similar features. The combination of factors with significant discrimination as input variables should outperform that with only single discriminative factor as input variable.
寻找脑内血肿(ICH)影响因素的判别组合,对具有相似特征的ICH患者进行聚类,以探讨影响因素与ICH患者30天死亡率之间的关系。
收集ICH患者的数据。我们使用决策树来寻找影响因素的判别组合。我们使用模糊C均值算法(FCM)对具有相似特征的ICH患者进行聚类,为每个聚类构建一个支持向量机(SVM)以建立多SVM分类器。最后,我们将每个测试数据指定到其合适的聚类中,并应用该聚类对应的SVM分类器来探讨影响因素与30天死亡率之间的关系。
选择用于分割决策树的两个影响因素是格拉斯哥昏迷量表(GCS)评分和血肿大小。FCM算法找到三个质心,一个用于高危组,一个用于中危组,另一个用于低危组。所提出的方法优于没有FCM算法对训练数据进行聚类的基准实验。
为每个具有相似特征的聚类构建分类器是合适的。以具有显著判别力的因素组合作为输入变量应优于仅以单个判别因素作为输入变量的情况。