Suppr超能文献

自发性脑出血患者30天死亡列线图的开发与验证:一项回顾性队列研究

Development and validation of a 30-day death nomogram in patients with spontaneous cerebral hemorrhage: a retrospective cohort study.

作者信息

Han Qian, Li Mei, Su Dongpo, Fu Aijun, Li Lin, Chen Tong

机构信息

Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei, China.

出版信息

Acta Neurol Belg. 2022 Feb;122(1):67-74. doi: 10.1007/s13760-021-01617-1. Epub 2021 Feb 10.

Abstract

The purpose of this study was to establish and validate a nomogram to estimate the 30-day probability of death in patients with spontaneous cerebral hemorrhage. From January 2015 to December 2017, a cohort of 450 patients with clinically diagnosed cerebral hemorrhage was collected for model development. The minimum absolute contraction and the selection operator (lasso) regression model were used to select the strongest prediction of patients with cerebral hemorrhage. Discrimination and calibration were used to evaluate the performance of the resulting nomogram. After internal validation, the nomogram was further assessed in a different cohort containing 148 consecutive subjects examined between January 2018 and December 2018. The nomogram included five predictors from the lasso regression analysis, including: Glasgow coma scale (GCS), hematoma location, hematoma volume, white blood cells, and D-dimer. Internal verification showed that the model had good discrimination, (the area under the curve is 0.955), and good calibration [unreliability (U) statistic, p = 0.739]. The nomogram still showed good discrimination (area under the curve = 0.888) and good calibration [U statistic, p = 0.926] in the verification cohort data. Decision curve analysis showed that the prediction nomogram was clinically useful. The current study delineates a predictive nomogram combining clinical and imaging features, which can help identify patients who may die of cerebral hemorrhage.

摘要

本研究的目的是建立并验证一种列线图,以估计自发性脑出血患者30天的死亡概率。2015年1月至2017年12月,收集了450例临床诊断为脑出血的患者组成队列用于模型开发。采用最小绝对收缩和选择算子(lasso)回归模型来选择对脑出血患者最强的预测指标。采用区分度和校准来评估所得列线图的性能。经过内部验证后,在另一个队列中对该列线图进行进一步评估,该队列包含2018年1月至2018年12月期间检查的148例连续受试者。该列线图包括lasso回归分析中的五个预测指标,即:格拉斯哥昏迷量表(GCS)、血肿位置、血肿体积、白细胞和D-二聚体。内部验证表明该模型具有良好的区分度(曲线下面积为0.955)和良好的校准[不可靠性(U)统计量,p = 0.739]。在验证队列数据中,该列线图仍显示出良好的区分度(曲线下面积 = 0.888)和良好的校准[U统计量,p = 0.926]。决策曲线分析表明该预测列线图具有临床实用性。当前研究描绘了一种结合临床和影像特征的预测列线图,其有助于识别可能死于脑出血的患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验