Suppr超能文献

优化用于追踪扩散粒子的实验参数。

Optimizing experimental parameters for tracking of diffusing particles.

作者信息

Vestergaard Christian L

机构信息

Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark and Aix Marseille Université, Université de Toulon, CNRS, CPT, UMR 7332, 13288 Marseille, France.

出版信息

Phys Rev E. 2016 Aug;94(2-1):022401. doi: 10.1103/PhysRevE.94.022401. Epub 2016 Aug 2.

Abstract

We describe how a single-particle tracking experiment should be designed in order for its recorded trajectories to contain the most information about a tracked particle's diffusion coefficient. The precision of estimators for the diffusion coefficient is affected by motion blur, limited photon statistics, and the length of recorded time series. We demonstrate for a particle undergoing free diffusion that precision is negligibly affected by motion blur in typical experiments, while optimizing photon counts and the number of recorded frames is the key to precision. Building on these results, we describe for a wide range of experimental scenarios how to choose experimental parameters in order to optimize the precision. Generally, one should choose quantity over quality: experiments should be designed to maximize the number of frames recorded in a time series, even if this means lower information content in individual frames.

摘要

我们描述了应如何设计单粒子追踪实验,以便其记录的轨迹包含关于被追踪粒子扩散系数的最多信息。扩散系数估计器的精度受运动模糊、有限的光子统计以及记录时间序列的长度影响。我们证明,对于经历自由扩散的粒子,在典型实验中精度受运动模糊的影响可忽略不计,而优化光子计数和记录帧数是提高精度的关键。基于这些结果,我们针对广泛的实验场景描述了如何选择实验参数以优化精度。一般来说,应选择数量而非质量:实验设计应使时间序列中记录的帧数最大化,即使这意味着单个帧中的信息含量较低。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验