Suppr超能文献

神经元中的卡哈尔体。

Cajal bodies in neurons.

作者信息

Lafarga Miguel, Tapia Olga, Romero Ana M, Berciano Maria T

机构信息

a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain.

出版信息

RNA Biol. 2017 Jun 3;14(6):712-725. doi: 10.1080/15476286.2016.1231360. Epub 2016 Sep 14.

Abstract

Cajal is commonly regarded as the father of modern neuroscience in recognition of his fundamental work on the structure of the nervous system. But Cajal also made seminal contributions to the knowledge of nuclear structure in the early 1900s, including the discovery of the "accessory body" later renamed "Cajal body" (CB). This important nuclear structure has emerged as a center for the assembly of ribonucleoproteins (RNPs) required for splicing, ribosome biogenesis and telomere maintenance. The modern era of CB research started in the 1990s with the discovery of coilin, now known as a scaffold protein of CBs, and specific probes for small nuclear RNAs (snRNAs). In this review, we summarize what we have learned in the recent decades concerning CBs in post-mitotic neurons, thereby ruling out dynamic changes in CB functions during the cell cycle. We show that CBs are particularly prominent in neurons, where they frequently associate with the nucleolus. Neuronal CBs are transcription-dependent nuclear organelles. Indeed, their number dynamically accommodates to support the high neuronal demand for splicing and ribosome biogenesis required for sustaining metabolic and bioelectrical activity. Mature neurons have canonical CBs enriched in coilin, survival motor neuron protein and snRNPs. Disruption and loss of neuronal CBs associate with severe neuronal dysfunctions in several neurological disorders such as motor neuron diseases. In particular, CB depletion in motor neurons seems to reflect a perturbation of transcription and splicing in spinal muscular atrophy, the most common genetic cause of infant mortality.

摘要

卡哈尔通常被视为现代神经科学之父,这是对他在神经系统结构方面的基础性工作的认可。但在20世纪初,卡哈尔对核结构的认识也做出了开创性贡献,包括发现了后来被重新命名为“卡哈尔体”(CB)的“副体”。这个重要的核结构已成为剪接、核糖体生物发生和端粒维持所需的核糖核蛋白(RNP)组装中心。CB研究的现代时代始于20世纪90年代,当时发现了卷曲螺旋蛋白(现已知是CB的支架蛋白)以及小核RNA(snRNA)的特异性探针。在这篇综述中,我们总结了近几十年来我们对有丝分裂后神经元中CB的了解,从而排除了细胞周期中CB功能的动态变化。我们发现CB在神经元中特别突出,它们经常与核仁相关联。神经元CB是转录依赖性核细胞器。事实上,它们的数量会动态调整,以满足神经元对维持代谢和生物电活动所需的剪接和核糖体生物发生的高需求。成熟神经元具有富含卷曲螺旋蛋白、生存运动神经元蛋白和snRNP的典型CB。在运动神经元疾病等几种神经系统疾病中,神经元CB的破坏和缺失与严重的神经元功能障碍有关。特别是,运动神经元中的CB缺失似乎反映了脊髓性肌萎缩症(婴儿死亡最常见的遗传原因)中转录和剪接的紊乱。

相似文献

1
Cajal bodies in neurons.神经元中的卡哈尔体。
RNA Biol. 2017 Jun 3;14(6):712-725. doi: 10.1080/15476286.2016.1231360. Epub 2016 Sep 14.
5
In vivo kinetics of Cajal body components.卡哈尔体成分的体内动力学。
J Cell Biol. 2004 Mar 15;164(6):831-42. doi: 10.1083/jcb.200311121.
6
The Cajal body.卡哈尔体。
Biochim Biophys Acta. 2008 Nov;1783(11):2108-15. doi: 10.1016/j.bbamcr.2008.07.016. Epub 2008 Aug 3.

引用本文的文献

2
Nuclear functions regulated by the VRK1 kinase.VRK1 激酶调节的核功能。
Nucleus. 2024 Dec;15(1):2353249. doi: 10.1080/19491034.2024.2353249. Epub 2024 May 16.
3
Coilin and Cajal bodies.科尔尼和卡哈尔体。
Nucleus. 2023 Dec;14(1):2256036. doi: 10.1080/19491034.2023.2256036.

本文引用的文献

4
Coilin: The first 25 years.卷曲螺旋蛋白:最初的25年。
RNA Biol. 2015;12(6):590-6. doi: 10.1080/15476286.2015.1034923.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验