Cacovich Stefania, Divitini Giorgio, Ireland Christopher, Matteocci Fabio, Di Carlo Aldo, Ducati Caterina
Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage road, CB3 0FS, Cambridge, UK.
Department of Electronic Engineering, University of Rome "Tor Vergata", C.H.O.S.E. (Centre for Hybrid and Organic Solar Energy), via del Politecnico 1, Rome, 00133, Italy.
ChemSusChem. 2016 Sep 22;9(18):2673-2678. doi: 10.1002/cssc.201600913. Epub 2016 Sep 15.
The technology of perovskite-based solar cells is evolving rapidly, reaching certified power conversion efficiency values now exceeding 20 %. One of the main drawbacks hindering progress in the field is the long-term stability of the cells: the mixed halide perovskites used in most devices are sensitive to humidity and degrade on a timescale varying from hours to weeks. The degradation mechanisms are poorly understood, but likely arise from combined physical and chemical modifications at the nanometer scale. The characterization of pristine and degraded materials is difficult owing to their complex chemical and physical structure and their relatively poor stability. In this work, we investigated the changes in local composition and morphology of a standard device after 2 months of air exposure in the dark, using scanning transmission electron microscopy (STEM) with nanometer resolution for imaging and analysis. Because of a state-of-the-art technique that combines STEM and energy dispersive X-ray spectroscopy (EDX), and the use of different decomposition algorithms for multivariate analysis, we highlighted the migration of elements across the interfaces between the layers comprising the device. We also noticed a morphological degradation of the hole-transporting layer (HTL), representing one of the main factors enabling the infiltration of moisture in the device, which results in reduced performance.
基于钙钛矿的太阳能电池技术正在迅速发展,目前其认证的功率转换效率值已超过20%。阻碍该领域进展的主要缺点之一是电池的长期稳定性:大多数器件中使用的混合卤化物钙钛矿对湿度敏感,会在数小时到数周不等的时间尺度上降解。降解机制尚不清楚,但可能源于纳米尺度上物理和化学变化的共同作用。由于其复杂的化学和物理结构以及相对较差的稳定性,对原始材料和降解材料进行表征很困难。在这项工作中,我们使用具有纳米分辨率的扫描透射电子显微镜(STEM)进行成像和分析,研究了一个标准器件在黑暗中暴露于空气中2个月后的局部成分和形态变化。由于一种将STEM和能量色散X射线光谱(EDX)相结合的先进技术,以及使用不同的分解算法进行多变量分析,我们突出了器件各层之间界面处元素的迁移。我们还注意到空穴传输层(HTL)的形态退化,这是导致水分侵入器件的主要因素之一,进而导致性能下降。