高效钙钛矿太阳能电池的合理策略

Rational Strategies for Efficient Perovskite Solar Cells.

作者信息

Seo Jangwon, Noh Jun Hong, Seok Sang Il

机构信息

Division of Advanced Materials, Korea Research Institute of Chemical Technology , 141 Gajeong-Ro, Yuseong-Gu, Daejeon 305-600, Republic of Korea.

School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, Korea.

出版信息

Acc Chem Res. 2016 Mar 15;49(3):562-72. doi: 10.1021/acs.accounts.5b00444. Epub 2016 Mar 7.

Abstract

A long-standing dream in the large scale application of solar energy conversion is the fabrication of solar cells with high-efficiency and long-term stability at low cost. The realization of such practical goals depends on the architecture, process and key materials because solar cells are typically constructed from multilayer heterostructures of light harvesters, with electron and hole transporting layers as a major component. Recently, inorganic-organic hybrid lead halide perovskites have attracted significant attention as light absorbers for the fabrication of low-cost and high-efficiency solar cells via a solution process. This mainly stems from long-range ambipolar charge transport properties, low exciton binding energies, and suitable band gap tuning by managing the chemical composition. In our pioneering work, a new photovoltaic platform for efficient perovskite solar cells (PSCs) was proposed, which yielded a high power conversion efficiency (PCE) of 12%. The platform consisted of a pillared architecture of a three-dimensional nanocomposite of perovskites fully infiltrating mesoporous TiO2, resulting in the formation of continuous phases and perovskite domains overlaid with a polymeric hole conductor. Since then, the PCE of our PSCs has been rapidly increased from 3% to over 20% certified efficiency. The unprecedented increase in the PCE can be attributed to the effective integration of the advantageous attributes of the refined bicontinuous architecture, deposition process, and composition of perovskite materials. Specifically, the bicontinuous architectures used in the high efficiency comprise a layer of perovskite sandwiched between mesoporous metal-oxide layer, which is a very thinner than that of used in conventional dye-sensitized solar cells, and hole-conducting contact materials with a metal back contact. The mesoporous scaffold can affect the hysteresis under different scan direction in measurements of PSCs. The hysteresis also greatly depends on the cell architecture and perovskite composition. In this Account, we will describe what we do with major aspects including (1) the film morphology through the development of intermediate chemistry retarding the rapid reaction between methylammonium or formamidinium iodide and lead halide (PbI2) for improved perovskite film formation; (2) the phase stability and band gap tuning of the perovskite layer through the materials engineering; (3) the development of electron and hole transporting materials for carrier-selective contacting layers; and (4) the adoption of p-i-n and n-i-p architectures depending on the position of the electron or hole conducting layer in front of incident light. Finally, we will summarize the recent incredible achievements in PSCs, and finally provide challenges facing the future development and commercialization of PSCs.

摘要

大规模应用太阳能转换的一个长期梦想是制造出低成本、高效率且具有长期稳定性的太阳能电池。实现这些实际目标取决于电池结构、工艺和关键材料,因为太阳能电池通常由多层光收集器异质结构构成,其中电子和空穴传输层是主要组成部分。最近,无机 - 有机杂化卤化铅钙钛矿作为低成本、高效率太阳能电池制造中的光吸收剂引起了广泛关注,这主要通过溶液法来实现。这主要源于其长程双极性电荷传输特性、低激子结合能以及通过控制化学成分实现的合适带隙调节。在我们的开创性工作中,提出了一种用于高效钙钛矿太阳能电池(PSC)的新型光伏平台,其功率转换效率(PCE)达到了12%。该平台由钙钛矿三维纳米复合材料的柱状结构组成,该复合材料完全渗透到介孔TiO₂中,从而形成连续相以及覆盖有聚合物空穴导体的钙钛矿域。从那时起,我们的PSC的PCE已从3%迅速提高到超过20%的认证效率。PCE的前所未有的提高可归因于精细双连续结构、沉积工艺以及钙钛矿材料成分的有利属性的有效整合。具体而言,高效PSC中使用的双连续结构包括夹在介孔金属氧化物层之间的钙钛矿层,该介孔金属氧化物层比传统染料敏化太阳能电池中使用的要薄得多,以及带有金属背接触的空穴传导接触材料。介孔支架会影响PSC测量中不同扫描方向下的滞后现象。滞后现象也很大程度上取决于电池结构和钙钛矿成分。在本综述中,我们将描述我们在主要方面所做的工作,包括:(1)通过开发中间化学方法来减缓甲基铵或甲脒碘与卤化铅(PbI₂)之间的快速反应以改善钙钛矿薄膜形成的薄膜形态;(2)通过材料工程实现钙钛矿层的相稳定性和带隙调节;(3)开发用于载流子选择性接触层的电子和空穴传输材料;(4)根据电子或空穴传导层在入射光前的位置采用p - i - n和n - i - p结构。最后,我们将总结PSC最近取得的惊人成就,并最终提供PSC未来发展和商业化面临的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索