Suppr超能文献

微重力作为一种生物学工具,用于研究宿主与病原体的相互作用,并指导针对病原菌的治疗和预防措施的开发。

Microgravity as a biological tool to examine host-pathogen interactions and to guide development of therapeutics and preventatives that target pathogenic bacteria.

作者信息

Higginson Ellen E, Galen James E, Levine Myron M, Tennant Sharon M

机构信息

Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.

Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.

出版信息

Pathog Dis. 2016 Nov;74(8). doi: 10.1093/femspd/ftw095. Epub 2016 Sep 13.

Abstract

Space exploration programs have long been interested in the effects of spaceflight on biology. This research is important not only in its relevance to future deep space exploration, but also because it has allowed investigators to ask questions about how gravity impacts cell behavior here on Earth. In the 1980s, scientists designed and built the first rotating wall vessel, capable of mimicking the low shear environment found in space. This vessel has since been used to investigate growth of both microorganisms and human tissue cells in low shear modeled microgravity conditions. Bacterial behavior has been shown to be altered both in space and under simulated microgravity conditions. In some cases, bacteria appear attenuated, whereas in others virulence is enhanced. This has consequences not only for manned spaceflight, but poses larger questions about the ability of bacteria to sense the world around them. By using the microgravity environment as a tool, we can exploit this phenomenon in the search for new therapeutics and preventatives against pathogenic bacteria for use both in space and on Earth.

摘要

长期以来,太空探索项目一直对太空飞行对生物学的影响感兴趣。这项研究不仅与未来的深空探索相关,而且还使研究人员能够提出有关重力如何影响地球上细胞行为的问题。在20世纪80年代,科学家设计并制造了第一台旋转壁容器,能够模拟太空中的低剪切环境。从那以后,这个容器被用于研究微生物和人体组织细胞在低剪切模拟微重力条件下的生长情况。细菌的行为在太空和模拟微重力条件下都已被证明会发生改变。在某些情况下,细菌似乎减弱了,而在其他情况下毒力则增强了。这不仅对载人航天飞行有影响,而且还引发了关于细菌感知周围世界能力的更大问题。通过将微重力环境作为一种工具,我们可以利用这一现象来寻找针对致病细菌的新疗法和预防措施,以便在太空和地球上使用。

相似文献

3
4
Effect of microgravity & space radiation on microbes.
Future Microbiol. 2018 Jun 1;13:831-847. doi: 10.2217/fmb-2017-0251. Epub 2018 May 10.
5
Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism.
Mil Med Res. 2018 May 14;5(1):18. doi: 10.1186/s40779-018-0162-9.
6
Microbial responses to microgravity and other low-shear environments.
Microbiol Mol Biol Rev. 2004 Jun;68(2):345-61. doi: 10.1128/MMBR.68.2.345-361.2004.
7
Artificial gravity in space and in medical research.
J Gravit Physiol. 1994 May;1(1):P19-22.

引用本文的文献

1
Challenges for the human immune system after leaving Earth.
NPJ Microgravity. 2024 Nov 18;10(1):106. doi: 10.1038/s41526-024-00446-9.
5
6
Growth of Staphylococcus aureus Using a Rotary Cell Culture System.
Methods Mol Biol. 2021;2341:79-88. doi: 10.1007/978-1-0716-1550-8_10.
7
Advances in space microbiology.
iScience. 2021 Apr 3;24(5):102395. doi: 10.1016/j.isci.2021.102395. eCollection 2021 May 21.
8
Immunity in Space: Prokaryote Adaptations and Immune Response in Microgravity.
Life (Basel). 2021 Feb 2;11(2):112. doi: 10.3390/life11020112.
9
Human Adaptation to Deep Space Environment: An Evolutionary Perspective of the Foreseen Interplanetary Exploration.
Front Public Health. 2020 Apr 24;8:119. doi: 10.3389/fpubh.2020.00119. eCollection 2020.
10
Response of membrane tension to gravity in an approximate cell model.
Theor Biol Med Model. 2019 Dec 5;16(1):19. doi: 10.1186/s12976-019-0116-2.

本文引用的文献

1
A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells.
mSphere. 2015 Nov 18;1(1). doi: 10.1128/mSphere.00030-15. eCollection 2016 Jan-Feb.
3
Three-dimensional culture in a microgravity bioreactor improves the engraftment efficiency of hepatic tissue constructs in mice.
J Mater Sci Mater Med. 2014 Dec;25(12):2699-709. doi: 10.1007/s10856-014-5279-0. Epub 2014 Jul 24.
5
7
Spaceflight promotes biofilm formation by Pseudomonas aeruginosa.
PLoS One. 2013 Apr 29;8(4):e62437. doi: 10.1371/journal.pone.0062437. Print 2013.
8
Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression.
PLoS One. 2013;8(3):e57860. doi: 10.1371/journal.pone.0057860. Epub 2013 Mar 5.
9
Bacterial small RNA-based negative regulation: Hfq and its accomplices.
J Biol Chem. 2013 Mar 22;288(12):7996-8003. doi: 10.1074/jbc.R112.441386. Epub 2013 Jan 29.
10
Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium.
Gastroenterology. 2011 Nov;141(5):1762-72. doi: 10.1053/j.gastro.2011.07.050. Epub 2011 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验