Department of Physics and TcSUH, University of Houston, Houston, Texas 77204, USA.
Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, USA.
Nat Commun. 2016 Sep 16;7:12765. doi: 10.1038/ncomms12765.
With the massive consumption of fossil fuels and its detrimental impact on the environment, methods of generating clean power are urgent. Hydrogen is an ideal carrier for renewable energy; however, hydrogen generation is inefficient because of the lack of robust catalysts that are substantially cheaper than platinum. Therefore, robust and durable earth-abundant and cost-effective catalysts are desirable for hydrogen generation from water splitting via hydrogen evolution reaction. Here we report an active and durable earth-abundant transition metal dichalcogenide-based hybrid catalyst that exhibits high hydrogen evolution activity approaching the state-of-the-art platinum catalysts, and superior to those of most transition metal dichalcogenides (molybdenum sulfide, cobalt diselenide and so on). Our material is fabricated by growing ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. This advance provides a different pathway to design cheap, efficient and sizable hydrogen-evolving electrode by simultaneously tuning the number of catalytic edge sites, porosity, heteroatom doping and electrical conductivity.
随着化石燃料的大量消耗及其对环境的不利影响,寻求清洁发电方法迫在眉睫。氢气是可再生能源的理想载体;然而,由于缺乏比铂便宜得多的强大催化剂,因此氢气的生成效率不高。因此,从水的分解中通过析氢反应来产生氢气,人们希望得到稳定且耐用的、丰富的、廉价的催化剂。在这里,我们报告了一种活性和耐用的、基于丰富的过渡金属二硫属化物的混合催化剂,它表现出了很高的析氢活性,接近最先进的铂催化剂,优于大多数过渡金属二硫属化物(硫化钼、硒化钴等)的活性。我们的材料是通过在独立的多孔镍硒化物泡沫上生长三元硫化硒化钼颗粒来制备的。这一进展为设计廉价、高效和大规模的析氢电极提供了一条不同的途径,同时可以调节催化边缘位点的数量、多孔性、杂原子掺杂和导电性。