Xie Haomiao, Khoshooei Milad Ahmadi, Mandal Mukunda, Vornholt Simon M, Hofmann Jan, Tufaro Luke M, Kirlikovali Kent O, Grimes Dawson A, Lee Seryeong, Su Shengyi, Reischauer Susanne, Sengupta Debabrata, Fahy Kira, Ma Kaikai, Wang Xiaoliang, Sha Fanrui, Gong Wei, Che Yongwei, Vitillo Jenny G, Anderson John S, Notestein Justin M, Chapman Karena W, Gagliardi Laura, Farha Omar K
Department of Chemistry and International Institute of Nanotechnology, Evanston, IL, USA.
Department of Chemistry, University of Chicago, Chicago, IL, USA.
Nat Chem. 2025 Jul 24. doi: 10.1038/s41557-025-01876-y.
Metal-sulfur active sites play a central role in catalytic processes such as hydrogenation and dehydrogenation, yet the majority of active sites in these compounds reside on the surfaces and edges of catalyst particles, limiting overall efficiency. Here we present a strategy to embed metal-sulfur active sites into metal-organic frameworks (MOFs) by converting bridging or terminal chloride ligands into hydroxide and subsequently into sulfide groups through post-synthetic modification. We apply this method to two representative MOF families: one featuring one-dimensional metal-chloride chains and another containing discrete multinuclear metal clusters. Crystallographic and spectroscopic analyses confirm structural integrity and sulfide incorporation, and the transformation is monitored by in situ total scattering methods. The sulfided MOFs display enhanced catalytic activity in the selective hydrogenation of nitroarenes using molecular hydrogen. Density functional theory calculations indicate that sulfur incorporation promotes homolytic metal-ligand bond cleavage and facilitates H activation. This work establishes an approach to construct MOFs featuring accessible metal-sulfide sites.
金属硫活性位点在氢化和脱氢等催化过程中起着核心作用,然而这些化合物中的大多数活性位点位于催化剂颗粒的表面和边缘,限制了整体效率。在此,我们提出了一种策略,通过将桥连或末端氯配体转化为氢氧化物,随后通过后合成修饰将其转化为硫化物基团,从而将金属硫活性位点嵌入金属有机框架(MOF)中。我们将此方法应用于两个代表性的MOF家族:一个具有一维金属氯化物链,另一个包含离散的多核金属簇。晶体学和光谱分析证实了结构完整性和硫化物的掺入,并且通过原位全散射方法监测了转化过程。硫化后的MOF在使用分子氢对硝基芳烃进行选择性氢化时表现出增强的催化活性。密度泛函理论计算表明,硫的掺入促进了金属-配体键的均裂并促进了氢的活化。这项工作建立了一种构建具有可及金属硫化物位点的MOF的方法。