PREMMi / Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.
Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France.
Brain. 2016 Nov 1;139(11):2864-2876. doi: 10.1093/brain/aww222.
Leber's hereditary optic neuropathy (MIM#535000), the commonest mitochondrial DNA-related disease, is caused by mutations affecting mitochondrial complex I. The clinical expression of the disorder, usually occurring in young adults, is typically characterized by subacute, usually sequential, bilateral visual loss, resulting from the degeneration of retinal ganglion cells. As the precise action of mitochondrial DNA mutations on the overall cell metabolism in Leber's hereditary optic neuropathy is unknown, we investigated the metabolomic profile of the disease. High performance liquid chromatography coupled with tandem mass spectrometry was used to quantify 188 metabolites in fibroblasts from 16 patients with Leber's hereditary optic neuropathy and eight healthy control subjects. Latent variable-based statistical methods were used to identify discriminating metabolites. One hundred and twenty-four of the metabolites were considered to be accurately quantified. A supervised orthogonal partial least squares discriminant analysis model separating patients with Leber's hereditary optic neuropathy from control subjects showed good predictive capability (Q 2cumulated = 0.57). Thirty-eight metabolites appeared to be the most significant variables, defining a Leber's hereditary optic neuropathy metabolic signature that revealed decreased concentrations of all proteinogenic amino acids, spermidine, putrescine, isovaleryl-carnitine, propionyl-carnitine and five sphingomyelin species, together with increased concentrations of 10 phosphatidylcholine species. This signature was not reproduced by the inhibition of complex I with rotenone or piericidin A in control fibroblasts. The importance of sphingomyelins and phosphatidylcholines in the Leber's hereditary optic neuropathy signature, together with the decreased amino acid pool, suggested an involvement of the endoplasmic reticulum. This was confirmed by the significantly increased phosphorylation of PERK and eIF2α, as well as the greater expression of C/EBP homologous protein and the increased XBP1 splicing, in fibroblasts from affected patients, all these changes being reversed by the endoplasmic reticulum stress inhibitor, TUDCA (tauroursodeoxycholic acid). Thus, our metabolomic analysis reveals a pharmacologically-reversible endoplasmic reticulum stress in complex I-related Leber's hereditary optic neuropathy fibroblasts, a finding that may open up new therapeutic perspectives for the treatment of Leber's hereditary optic neuropathy with endoplasmic reticulum-targeting drugs.
Leber 遗传性视神经病变(MIM#535000)是最常见的线粒体 DNA 相关疾病,由影响线粒体复合物 I 的突变引起。该病的临床表现通常发生在年轻人中,特征为亚急性、通常是顺序性的双侧视力丧失,这是由于视网膜神经节细胞的退化所致。由于线粒体 DNA 突变对 Leber 遗传性视神经病变中整个细胞代谢的确切作用尚不清楚,我们研究了该疾病的代谢组学特征。使用高效液相色谱-串联质谱法定量分析了 16 名 Leber 遗传性视神经病变患者和 8 名健康对照者的成纤维细胞中的 188 种代谢物。基于潜在变量的统计方法用于识别有区别的代谢物。124 种代谢物被认为可以准确定量。区分患者和对照的正交偏最小二乘判别分析模型具有良好的预测能力(Q 2cumulated = 0.57)。38 种代谢物似乎是最显著的变量,定义了 Leber 遗传性视神经病变的代谢特征,表现为所有蛋白质氨基酸、亚精胺、腐胺、异丁酰肉碱、丙酰肉碱和 5 种神经鞘磷脂的浓度降低,同时 10 种磷脂酰胆碱的浓度增加。用鱼藤酮或 piericidin A 抑制对照成纤维细胞中的复合物 I 不能复制这种特征。鞘脂和磷脂酰胆碱在 Leber 遗传性视神经病变特征中的重要性,以及氨基酸池的减少,表明内质网的参与。这一点通过受影响患者的成纤维细胞中 PERK 和 eIF2α 的磷酸化显著增加,C/EBP 同源蛋白的表达增加以及 XBP1 的剪接增加得到证实,所有这些变化都可以通过内质网应激抑制剂 TUDCA(牛磺熊脱氧胆酸)逆转。因此,我们的代谢组学分析揭示了复合物 I 相关的 Leber 遗传性视神经病变成纤维细胞中一种药理学上可逆转的内质网应激,这一发现可能为使用针对内质网的药物治疗 Leber 遗传性视神经病变开辟新的治疗前景。