Galiceanu Mircea, Jurjiu Aurel
Departamento de Física, Universidade Federal do Amazonas, 69077-000 Manaus, Brazil.
Department of Condensed Matter Physics and Advanced Technologies, Faculty of Physics, Babes-Bolyai University, Street Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania.
J Chem Phys. 2016 Sep 14;145(10):104901. doi: 10.1063/1.4962196.
We focus on the relaxation dynamics of multilayer polymer structures having, as underlying topology, the Husimi cactus. The relaxation dynamics of the multilayer structures is investigated in the framework of generalized Gaussian structures model using both Rouse and Zimm approaches. In the Rouse type-approach, we determine analytically the complete eigenvalues spectrum and based on it we calculate the mechanical relaxation moduli (storage and loss modulus) and the average monomer displacement. First, we monitor these physical quantities for structures with a fixed generation number and we increase the number of layers, such that the linear topology will smoothly come into play. Second, we keep constant the size of the structures, varying simultaneously two parameters: the generation number of the main layer, G, and the number of layers, c. This fact allows us to study in detail the crossover from a pure Husimi cactus behavior to a predominately linear chain behavior. The most interesting situation is found when the two limiting topologies cancel each other. For this case, we encounter in the intermediate frequency/time domain regions of constant slope for different values of the parameter set (G, c) and we show that the number of layers follows an exponential-law of G. In the Zimm-type approach, which includes the hydrodynamic interactions, the quantities that describe the mechanical relaxation dynamics do not show scaling behavior as in the Rouse model, except the limiting case, namely, a very high number of layers and low generation number.
我们关注以胡西米仙人掌为基础拓扑结构的多层聚合物结构的弛豫动力学。在广义高斯结构模型的框架下,使用劳厄斯(Rouse)方法和齐姆(Zimm)方法研究多层结构的弛豫动力学。在劳厄斯型方法中,我们解析地确定完整的本征值谱,并在此基础上计算力学弛豫模量(储能模量和损耗模量)以及平均单体位移。首先,我们监测具有固定世代数的结构的这些物理量,并增加层数,使得线性拓扑结构将平稳地发挥作用。其次,我们保持结构的大小不变,同时改变两个参数:主层的世代数G和层数c。这一事实使我们能够详细研究从纯胡西米仙人掌行为到主要线性链行为的转变。当两种极限拓扑结构相互抵消时,会出现最有趣的情况。对于这种情况,我们在不同参数集(G,c)的中频/时域区域中遇到恒定斜率,并且我们表明层数遵循G的指数定律。在包括流体动力学相互作用的齐姆型方法中,描述力学弛豫动力学的量不像在劳厄斯模型中那样呈现标度行为,除了极限情况,即层数非常多且世代数低的情况。