Suppr超能文献

基于小波变换模极大值的短外显子检测

Short Exon Detection via Wavelet Transform Modulus Maxima.

作者信息

Zhang Xiaolei, Shen Zhiwei, Zhang Guishan, Shen Yuanyu, Chen Miaomiao, Zhao Jiaxiang, Wu Renhua

机构信息

Shantou University Medical College, Shantou, P.R. China.

Department of Radiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, P.R. China.

出版信息

PLoS One. 2016 Sep 16;11(9):e0163088. doi: 10.1371/journal.pone.0163088. eCollection 2016.

Abstract

The detection of short exons is a challenging open problem in the field of bioinformatics. Due to the fact that the weakness of existing model-independent methods lies in their inability to reliably detect small exons, a model-independent method based on the singularity detection with wavelet transform modulus maxima has been developed for detecting short coding sequences (exons) in eukaryotic DNA sequences. In the analysis of our method, the local maxima can capture and characterize singularities of short exons, which helps to yield significant patterns that are rarely observed with the traditional methods. In order to get some information about singularities on the differences between the exon signal and the background noise, the noise level is estimated by filtering the genomic sequence through a notch filter. Meanwhile, a fast method based on a piecewise cubic Hermite interpolating polynomial is applied to reconstruct the wavelet coefficients for improving the computational efficiency. In addition, the output measure of a paired-numerical representation calculated in both forward and reverse directions is used to incorporate a useful DNA structural property. The performances of our approach and other techniques are evaluated on two benchmark data sets. Experimental results demonstrate that the proposed method outperforms all assessed model-independent methods for detecting short exons in terms of evaluation metrics.

摘要

短外显子的检测是生物信息学领域一个具有挑战性的开放性问题。由于现有与模型无关的方法的弱点在于它们无法可靠地检测小外显子,因此已开发出一种基于小波变换模极大值奇异性检测的与模型无关的方法,用于检测真核生物DNA序列中的短编码序列(外显子)。在对我们方法的分析中,局部极大值可以捕获并表征短外显子的奇异性,这有助于产生传统方法很少观察到的显著模式。为了获取有关外显子信号与背景噪声差异的奇异性的一些信息,通过陷波滤波器对基因组序列进行滤波来估计噪声水平。同时,应用基于分段三次埃尔米特插值多项式的快速方法来重构小波系数,以提高计算效率。此外,在正向和反向计算的配对数值表示的输出度量用于纳入有用的DNA结构特性。我们的方法和其他技术的性能在两个基准数据集上进行了评估。实验结果表明,在评估指标方面,所提出的方法在检测短外显子方面优于所有评估的与模型无关的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验