Root-Bernstein Robert, Kim Yunsoo, Sanjay Adithya, Burton Zachary F
a Department of Physiology , Michigan State University , E. Lansing , MI , USA.
b Troy High School , Troy , MI , USA.
Transcription. 2016 Oct 19;7(5):153-163. doi: 10.1080/21541264.2016.1235527.
Multiple models have been advanced for the evolution of cloverleaf tRNA. Here, the conserved archaeal tRNA core (75-nt) is posited to have evolved from ligation of three proto-tRNA minihelices (31-nt) and two-symmetrical 9-nt deletions within joined acceptor stems (93 - 18 = 75-nt). The primary evidence for this conclusion is that the 5-nt stem 7-nt anticodon loop and the 5-nt stem 7-nt T loop are structurally homologous and related by coding sequence. We posit that the D loop was generated from a third minihelix (31-nt) in which the stem and loop became rearranged after 9-nt acceptor stem deletions and cloverleaf folding. The most 3´-5-nt segment of the D loop and the 5-nt V loop are apparent remnants of the joined acceptor stems (14 - 9 = 5-nt). Before refolding in the tRNA cloverleaf, we posit that the 3'-5-nt segment of the D loop and the 5-nt V loop were paired, and, in the tRNA cloverleaf, frequent pairing of positions 29 (D loop) and 47 (V loop) remains (numbered on a 75-nt tRNA cloverleaf core). Amazingly, after >3.5 billion years of evolutionary pressure on the tRNA cloverleaf structure, a model can be constructed that convincingly describes the genesis of 75/75-nt conserved archaeal tRNA core positions. Judging from the tRNA structure, cloverleaf tRNA appears to represent at least a second-generation scheme (and possibly a third-generation scheme) that replaced a robust 31-nt minihelix protein-coding system, evidence for which is preserved in the cloverleaf structure. Understanding tRNA evolution provides insights into ribosome and rRNA evolution.
关于三叶草型tRNA的进化,已经提出了多种模型。在这里,保守的古细菌tRNA核心(75个核苷酸)被认为是由三个原始tRNA小螺旋(31个核苷酸)连接而成,并在连接的受体茎内有两个对称的9个核苷酸的缺失(93 - 18 = 75个核苷酸)。这一结论的主要证据是,5个核苷酸的茎、7个核苷酸的反密码子环以及5个核苷酸的茎、7个核苷酸的T环在结构上是同源的,并且通过编码序列相关。我们认为,D环是由第三个小螺旋(31个核苷酸)产生的,其中的茎和环在9个核苷酸的受体茎缺失和三叶草折叠后发生了重排。D环最3′端的5个核苷酸片段和5个核苷酸的V环明显是连接的受体茎的残余部分(14 - 9 = 5个核苷酸)。在tRNA三叶草重折叠之前,我们认为D环的3′-5个核苷酸片段和5个核苷酸的V环是配对的,并且在tRNA三叶草中,29位(D环)和47位(V环)之间频繁配对仍然存在(在75个核苷酸的tRNA三叶草核心上编号)。令人惊讶的是,在对tRNA三叶草结构施加了超过35亿年的进化压力之后,可以构建一个模型,令人信服地描述75/75个核苷酸保守古细菌tRNA核心位置的起源。从tRNA结构判断,三叶草型tRNA似乎代表了至少第二代方案(可能还有第三代方案),它取代了一个强大的31个核苷酸的小螺旋蛋白质编码系统,其证据保存在三叶草结构中。了解tRNA进化有助于深入了解核糖体和rRNA的进化。