Foulon Valentin, Le Roux Frédérique, Lambert Christophe, Huvet Arnaud, Soudant Philippe, Paul-Pont Ika
Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD Ifremer, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise , Rue Dumont d'Urville, 29280 Plouzané, France.
Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins , ZI de la Pointe du Diable, CS 10070, F-29280 Plouzané, France.
Environ Sci Technol. 2016 Oct 18;50(20):10988-10996. doi: 10.1021/acs.est.6b02720. Epub 2016 Oct 6.
Microplastics collected at sea harbor a high diversity of microorganisms, including some Vibrio genus members, raising questions about the role of microplastics as a novel ecological niche for potentially pathogenic microorganisms. In the present study, we investigated the adhesion dynamics of Vibrio crassostreae on polystyrene microparticles (micro-PS) using electronic and fluorescence microscopy techniques. Micro-PS were incubated with bacteria in different media (Zobell culture medium and artificial seawater) with or without natural marine aggregates. The highest percentage of colonized particles (38-100%) was observed in Zobell culture medium, which may be related to nutrient availability for production of pili and exopolysaccharide adhesion structures. A longer bacterial attachment (6 days) was observed on irregular micro-PS compared to smooth particles (<10 h), but complete decolonization of all particles eventually occurred. The presence of natural marine agreggates around micro-PS led to substantial and perennial colonization featuring monospecific biofilms at the surface of the aggregates. These exploratory results suggest that V. crassostreae may be a secondary colonizer of micro-PS, requiring a multispecies community to form a durable adhesion phenotype. Temporal assessment of microbial colonization on microplastics at sea using imaging and omics approaches are further indicated to better understand the microplastics colonization dynamics and species assemblages.
在海上收集的微塑料含有高度多样的微生物,包括一些弧菌属成员,这引发了关于微塑料作为潜在致病微生物的新型生态位的作用的疑问。在本研究中,我们使用电子显微镜和荧光显微镜技术研究了厚壳弧菌在聚苯乙烯微粒(微塑料聚苯乙烯)上的黏附动力学。微塑料聚苯乙烯在不同培养基(佐贝尔培养基和人工海水)中与细菌一起孵育,有无天然海洋聚集体。在佐贝尔培养基中观察到定殖颗粒的最高百分比(38 - 100%),这可能与用于菌毛和胞外多糖黏附结构产生的养分可用性有关。与光滑颗粒(<10小时)相比,在不规则微塑料聚苯乙烯上观察到更长的细菌附着时间(6天),但最终所有颗粒都完全去定殖。微塑料聚苯乙烯周围天然海洋聚集体的存在导致大量且持久的定殖,在聚集体表面形成单物种生物膜。这些探索性结果表明,厚壳弧菌可能是微塑料聚苯乙烯的次生定殖者,需要多物种群落来形成持久的黏附表型。进一步表明使用成像和组学方法对海上微塑料上的微生物定殖进行时间评估,以更好地了解微塑料定殖动力学和物种组合。